

DESIGN EXAMPLES – BONDED ANCHORS

Actions N^g_{ed}= Design value of tensile load 20 kΝ Number of anchors in the group loaded with tension 4 n = $N_{ed}^{h} = N_{ed}^{g}/n =$ Design value of tensile load acting on a single anchor 5 kΝ Percent of sustained load from total load 70 % a $V_{sd}^g =$ Design value of shear load 10 kΝ Number of anchors in the group loaded with shear n = 4 $V_{ed}^{h} = V_{ed}^{g}/n =$ 2.5 Design value of shear load acting on a single anchor kΝ **Anchor data** WIT-UH 300 + W-VD-A/S M12 Anchor type Steel grade 5.8 12 Anchor diameter Μ h_f = 110 Anchorage depth **Base material** Characteristic compressive cube strength $f_{ck,cube} =$ 25 N/mm² of concrete at 28 days Characteristic compressive cube strength 20 N/mm² $f_{ck,cyl} =$ of concrete at 28 days Non-cracked concrete V **Cracked concrete**

Structural verification											
Tension		Shear									
$\beta_{N,s} =$	N ^h _{Ed} / N _{Rd,s}	$\beta_{v,s} =$	V_{Ed}^{h} / V_{Rd,s}^{}								
β _{N,s} =	18 %	β _{v,s} =	12 %								
$\beta_{N,p} =$	N ^h _{Ed} / N _{Rd,p}	$\beta_{V,cp} =$	V_Ed / V_Rd,cp								
β _{N,p} =	30 %	$\beta_{V,cp} =$	9 %								
$\beta_{N,c} =$	N ^h _{Ed} / N _{Rd,c}	$\beta_{V,c} =$	$V_{Ed}^{h} / V_{Rd,c}$								
β _{N,c} =	35 %	β _{v,c} =	55 %								
$\beta_{N,sp} =$	N ^h _{Ed} / N _{Rd,sp}										
β _{N,sp} =	13 %										

I - Required verification of post-installed anchor in combined tension and shear load:											
Assessment of steel failure only											
	Utilization Verification										
Tension	Tension 18 % $\beta_{N,max} \leq 1.00$										
Shear	12 %	β _{ν,max} ≤ 1.00									
Tension/shear combination	Tension/shear combination5 % $\beta_{N,max}^{2.0} + \beta_{V,max}^{2.0} \le 1.00$										
II - Required verification of p	ost-installed anchor	in combined tension and shear load:									
Assessment of failure modes other than steel											
	Utilization	Verification									
Tension	Tension 35 % $\beta_{N,max} \le 1.00$										
Shear	Shear 55 % $\beta_{V,max} \le 1.00$										
Tension/shear combination											

A. Required verification of post-installed anchor in tension										
1. Steel failure										
$N_{Rd,s}$	=	28.1	kN							
β _{N,s}	=	0.18								
2. Combined p	oull	-out an	d con	crete failure						
$N_{Rd,p} = N_{Rd,p}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$										
N ⁰ _{Rd,p}	=	44.2	kN							
a. Influence of concret	e str	ength								
f _{b,N}	=	1.0								
b. Influence of embed	ment	t depth								
f _{hef}	=	1.0								

DESIGN EXAMPLES – BONDED ANCHORS

c. Influence of spacing										
\$ _{cr,Np}	=	330	mm							
S _x	=	150	mm	$s_x^{\prime}/s_{_{cr,p}}$	=	0.45	f _{sx,p}	=	0.73	
s _y	=	150	mm	s _y / s _{cr,p}	=	0.45	f _{sy,p}	=	0.73	
d. Influence of edge distance										
C _{cr,Np}	=	165	mm							
C _x	=	100	mm	$c_x^{\prime}/c_{_{cr,p}}^{\prime}$	=	0.61	f _{cx, 1,p}	=	0.88	
									0.81	
c _y	=	250	mm	c, / c,	=	1.52	f _{cy,p}	=	1.00	
e. Influence of sustain	ed lo	bading								
f	=	1.0								
N _{Rd,p}	=	16.79	kN							
β _{N,p}	=	0.3								

3. Concrete cone failure											
$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$											
N ⁰ _{Rd,c}	=	37.8	kN								
a. Influence of concrete strength											
f _{b,N}	=	1.0									
b. Influence of embedment depth											
f _{hef}	=	1.0									
c. Influence of spacing											
S _{cr,N}	=	330	mm								
s _x	=	150	mm	s _x / s _{cr,N}	=	0.45	f _{sx}	=	0.73		
s _y	=	150	mm	$s_y / s_{cr,N}$	=	0.45	f _{sy}	=	0.73		
d. Influence of edge d	listar	ice									
C _{cr,N}	=	165	mm								
C _x	=	100	mm	$c_x / c_{cr,N}$	=	0.61	f _{cx,1}	=	0.88		
							f _{cx,2}	=	0.81		
C _y	=	250	mm	$c_y / c_{cr,N}$	=	1.52	f _{cy}	=	1.00		
N _{Rd,c}	=	14.36	kΝ								
β _{N,c}	=	0.35									

4. Splitting failure

No verification is required if at least one of the following conditions is fulfilled.

- a. The edge distance in all directions is c ≥ 1.0 c_{cr,sp.} for single fasteners and c ≥ 1.2 c_{cr,sp.} for groups of fasteners and the member depth is h ≥ h_{min} in both cases, with h_{min} corresponding to c_{cr,sp}.
- b. The characteristic resistances for concrete cone failure and pull-out failure or combined pull-out and concrete failure (bonded fasteners) are calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to wk ≈ 0.3 mm.

$\overline{N_{Rd,sp}} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef}$

Verification											
c_x	=	100	mm	C _{cr,sp}	=	264	mm	$c_x \ge c_{cr,sp}$		check required	
				1.2 c _{cr,sp}	=	316.8	mm	c _x ≥1.2 c	cr,sp	check required	
c _y	=	250	mm	C _{cr,sp}	=	264	mm	$c_y \ge c_{cr,sp}$		check required	
				1.2 c _{cr,sp}	=	316.8	mm	c _y ≥1.2 c	cr,sp	check required	
h	=	250	mm	h _{min}	=	140	mm	$h \geq h_{_{\min}}$		v	
$N^{\rm o}_{\rm Rd,sp}$	=	37.8	kN								
a. Influence of concrete strength											
f _{b,N}	=	1.00									
b. Influence of embedment depth											
f _{hef}	=	1.00									
c. Influence of Spacing											
S cr,sp	=	220	mm								
\$ _x	=	150	mm	$s_{_{\rm X}}^{} / s_{_{\rm cr,sp}}^{}$	=	0.68		f _{sx,sp}	=	0.85	
s _y	=	150	mm	s _y / s _{cr,sp}	=	0.68		f _{sy,sp}	=	0.85	
d. Influence of edge d	istar	ice									
C _{cr,sp}	=	110	mm								
c_x	=	100	mm	$c_x^{\prime}/c_{cr,sp}^{\prime}$	=	0.91		f _{cx,1,sp}	=	0.98	
с _у	=	250	mm	c _y / c _{cr,sp}	=	2.27		f _{cx,2,sp}	=	1	
								f _{cy,sp}	=	1	
e. Influence of concret	e me	ember thick	ness								
h	=	250	mm	h _{min}	=	140		h/h _{min}	=	1.79	
f _h	=	1.48									
N _{Rd,sp}	=	39.6	kN								
β _{N,sp}	=	0.13									

DESIGN EXAMPLES – BONDED ANCHORS

B. Required verification of post-installed anchor in shear												
1. Steel failure, shear load without lever arm												
V _{Rd,s}	=	20.2	kN									
β _{v,s}	=	0.12										
2. Concrete pry-out												
V _{Rd,c}	=	$k \cdot min(N_{_{Rd}}$, _{p;} N _{Rd,c})									
N _{Rd,c}	=	14.36	kN									
k	=	2										
V _{Rd,cp}	=	28.72	kN									
β _{ν,cp}	=	0.09		1								
3. Concrete edge breakout												
Verification of concret	e ed	ge failure m	ay be a	omitted for s	single	e fasteners and grou	ps with an	edge	e distance	in all dire	ection	IS
c ≥ max (10 h _{ef} ; 60 d												
For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the											sed in the	
verification.												
V _{Rd,c}	=		1	$\cdot \mathbf{f}_{c1,V} \cdot \mathbf{f}_{c2,V}$	· † · 1	h						
V ⁰ _{Rk,c}	=	4.6	kN									
a. Influence of concre	e str	ength										
f _{b,N}	=	1.00										
b. Influence of embed	meni	t depth										
f _{hef,V}	=	1.04										
c. Influence of spacing	9											
In groups loaded perp spacing should be use				only two ac	djace	ent anchors closest a	and paralle	to th	ne edge co	arry the lo	ad. 1	The same
s	=	150	mm	c,	=	100	s/c	=	1.5	f _{s,v}	=	1.5
d. Influence of edge d	istan	ice c,		<u> </u>			1					
	=	100	mm	d	=	12	c,/d	=	8.33	f _{c1,v}	=	1.26
e. Influence of edge d	istan	ice c ₂					l, l,			cl,v		
c	=	250	mm	c ₁	=	100	c ₂ /c ₁	=	2.50	f _{c2,v}	=	1
f. Influence on load di	rectio	on										
a	=	0	•									
f	=	1		1								
g. Influence on memb	er thi	ickness										
h	=	250	mm	c,	=	100	h/c ₁	=	2.50			
f _h	=	1										
V _{Rd,c}	=	9.04	kN	for a single	e and	chor						
β _{V,c}	=	0.55										

