

DESIGN TEMPLATE – MECHANICAL ANCHORS

Actions							
Design value of tensile load		N ^g _{ed} =	30	kN			
Number of anchors in the group loaded	d with tension	n =	4				
Design value of tensile load acting on a	single anchor	$N_{ed}^{h} = N_{ed}^{g}/n =$	7.5	kN			
Design value of shear load		$V_{ed}^g =$	15	kN			
Number of anchors in the group load	ed with shear	n =	4				
Design value of shear load acting on a	single anchor	$V_{ed}^{h} = V_{ed}^{g}/n =$	3.75	kN			
Anchor data							
	Anchor type		W-FAZ/A4 M12				
And	chor diameter	М	12				
Anc	horage depth	h _{ef} =	70				
Base material							
	Comp	ressive strength class of concrete					
Characteristic compressive of concret	cube strength re at 28 days	${\rm f}_{\rm ck, cube} =$	37	N/ mm²			
Characteristic compressive of concret	cube strength e at 28 days	$\mathfrak{f}_{ck,cyl} =$	30	N/ mm ²			
Cracked concrete	 ✓ 	Non-cracked concrete					

Structural verification												
Tension		Shear										
β _{N,s} =	N ^h _{Ed} / N _{Rd,s}	$\beta_{v,s} =$	$V_{Ed}^{h} / V_{Rd,s}$									
β _{N,s} =	28 %	β _{v,s} =	16 %									
β _{N,p} =	N ^h _{Ed} / N _{Rd,p}	$\beta_{V,cp} =$	$V_{Ed}^{h} / V_{Rd,cp}$									
β _{N,p} =	57 %	$\beta_{V,cp} =$	13 %									
β _{N,c} =	N ^h _{Ed} / N _{Rd,c}	$\beta_{V,cp} =$	$V_{Ed}^{h} / V_{Rd,cp}$									
β _{N,c} =	62 %	$\beta_{V,cp} =$	62 %									
$\beta_{N,sp} =$	N ^h _{Ed} / N _{Rd,sp}											
β _{N,sp} =	0 %											

I - Required verification of post-installed anchor in combined tension and shear load:

Assessment of steel failure only							
	Utilization	Verification					
Tension	28 %	β _{N,max} ≤ 1.00					
Shear	16 %	β _{v,max} ≤ 1.00					
Tension/shear combination	10 %	$\beta_{N,max}^{2.0} + \beta_{V,max}^{2.0} \le 1.00$					
II - Required verification of pe	ost-installed anchor in combin	ed tension and shear load:					
Assessment of failure modes other than steel							
	Utilization	Verification					
Tension	62 %	$\beta_{N,max} \le 1.00$					
Shear	62 %	β _{V,max} ≤ 1.00					
Tension/shear combination	98 %	$\beta_{N,max}^{1.5} + \beta_{V,max}^{1.5} \le 1.00$					
	·						

A. Required verification of post-installed anchor in tension									
1. Steel failure									
$N_{Rd,s}$	=	26.7	kN						
β _{N,s}	=	28	%						
2. Pull-out									
N _{Rd,p}	=	$N^{o}_{_{Rd,p}}\cdotf_{_{b,N}}$							
a. Influence of concre	te str	ength							
f _{b,N}	=	1.22							
N° _{Rd,p}	=	10.70	kΝ						
$N_{Rd,p}$	=	13.05	kN						
$\beta_{N,P}$	=	57	%						

DESIGN TEMPLATE – MECHANICAL ANCHORS

3. Concrete breakout											
$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$											
$N^{0}_{Rd,c} = 13.4$											
a. Influence of concrete strength											
f _{b,N}	$f_{b,N} = 1.22$										
b. Influence of spacing	9										
S _{cr,N}	=	210	mm								
s _x	=	150	mm	$s_x / s_{cr,N}$	=	0.71		f _{sx}	-	0.86	
s _y	=	150	mm	$s_y / s_{cr,N}$	=	0.71		f _{sy}	-	0.86	
d. Influence of edge d	listar	nce									
C _{cr,N}	=	105	mm								
c,	=	200	mm	$c_x / c_{cr,N}$	=	1.90	f	x,1	-	1.00	
							f	x,2	-	1.00	
с _у	=	200	mm	$c_{y}^{\prime}/c_{cr,N}^{\prime}$	=	1.90		f _{cy}	-	1.00	
N _{Rd,c}	=	12.09	kN								
β _{N,c}	=	62	%								

4. Splitting failure

No verification is required if at least one of the following conditions is fulfilled.

a. The edge distance in all directions is $c \ge 1,0 c_{c_{r,sp.}}$ for single fasteners and $c \ge 1,2 c_{c_{r,sp.}}$ for groups of fasteners and the member depth is $h \ge h_{min}$ in both cases, with h_{min} corresponding to $c_{c_{r,sp.}}$.

(applies)

b. The characteristic resistances for concrete cone failure and pull-out failure (headed and post-installed mechanical fasteners) or combined pull-out and concrete failure (bonded fasteners) are calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to wk ≈ 0,3 mm.

$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

								Verification				
c _x	=		mm	C _{cr,sp}	=		mm	c _x ≥ c _{cr,sp}	Not required			
					=		mm	$c_x \ge 1,2 c_{cr,sp}$	Not required			
C _y	=		mm	C _{cr,sp}	=		mm	$c_{y} \ge c_{cr,sp}$	Not required			
					=		mm	$c_y \ge 1,2 c_{cr,sp}$	Not required			
h	=		mm	h _{min}	=		mm	h ≥ h _{min}				
N ^o _{Rd,sp}	=		kN									
a. Influence of concret	te str	rength										
f _{b,N}	$f_{b,N} =$											
b. Influence of embed	b. Influence of embedment depth											
f _{hef}	=											

c. Influence of spacing											
\$ _{cr,sp}	=		mm								
s _x	=		mm	s _x / s _{cr,sp}	=			f _{sx,sp}	=		
s _y	=		mm	s _y / s _{cr,sp}	=			f _{sy,sp}	=		
d. Influence of edge d	d. Influence of edge distance										
C _{cr,sp}	=		mm								
c,x	=		mm	c_ / c_	=			f _{cx,1,sp}	=		
								f _{cx,2,sp}	=		
C _y	=		mm	c _y / c _{cr,sp}	=			f _{cy,sp}	=		
e. Influence of con	ncre	te membe	er thic	kness							
h	=		mm	h _{min}	=		mm	h/h _{min}	=		
f _h	=										
N _{Rd,sp}	=		kN								
β _{N,sp}	=										

B. Required verification of post-installed anchor in shear

1. Steel failure, shear load without lever arm									
$V^{\rm O}_{\rm Rd,s}$	=	24	kN						
$\beta_{v,s}$	=	16	%						

2. Concrete pry-out

V _{Rd,c}	=	$k\cdot N_{_{Rd,c}}$		
N _{Rd,c}	=	12.09		
k	=	2,4		
V _{Rd,cp}	=	29.02	kN	
$\beta_{v,cp}$	=	13	%	

3. Concrete edge breakout

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{af}; 60 d)$.

For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

$V_{Rd,c}$	=	$V^{\scriptscriptstyle 0}_{_{Rd,c}}\cdot f_{_{b,V}}\cdot$	$\mathbf{f}_{\mathrm{s,V}}\cdot\mathbf{f}_{\mathrm{c2}}$	$_{,v} \cdot f_a \cdot f_h$
$V^{\rm O}_{_{Rk,c}}$	=	21.2	kN	
a. Influence of concret	e str	ength		
f _{b,N}	=	1.22		

DESIGN TEMPLATE – MECHANICAL ANCHORS

b. Influence of spacing												
In groups loaded perpendicular to the edge, only two adjacent anchors closest and parallel to the edge carry the load. The same spacing should be used for the verification.												
s	=	150	mm	c ₁	=	200	s/c ₁	=	0.75	f _{s,v}	=	1.25
c. Influence of edge d	c. Influence of edge distance											
c ₂	=	200	mm	c ₁	=	200	c ₂ /c ₁	=	1	f _{c2,v}	=	0.75
d. Influence on load d	lirect	ion										
a	=	0	0									
f	=	1										
e. Influence on memb	er thi	ckness										
h	=	300	mm	c ₁	=	200	h/c ₁	=	1.50			
f _h	=	1										
V _{Rd,c}	=	24.25	kN	for a single	e anc	chor						
β _{v,c}	=	62	%									

