

280 ml 420 ml

825 ml

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	e sizes	Art. no.
280 ml	peeler	5918 504 280
420 ml	coaxial	5918 500 420
825 ml	side-by-side	5918 503 825

Type of installation		
Pre-positioned	In-place	Stand-off
√	1	1

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
/	1	1

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	-	✓

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330499-01-0601	ETA-17/0127, 13.11.2020
ICC-ES Evaluation Report	ICC	AC 308	ESR-4466, 01.10.2019
Fire resistance	Ingenieurbüro Thiele	TR 020	210807, 09.02.2018
LEED	eurofins		16.03.17
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	16.03.17
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Anchor material, as specified in the tables, steel grade 5.8

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, f_{ck} = 60 N/mm²
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective and	horage	h_{ef}	[mm]	80	90	110	125	170	210	240	270
Non-crack	ed concrete	•									
Tension	C20/25	NI.	[kN]	18.3	29.0	42.2	68.8	109.0	149.7	182.9	218.2
	C50/60	N_{Rk}	[KIN]	18.3	29.0	42.2	78.5	122.5	176.5	229.5	280.5
Shear	≥ C20/25	V_{Rk}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Cracked co	oncrete										
Tension	C20/25	NI	[[,k,1]	14.1	21.2	33.2	48.1	76.3	104.8	128.0	152.8
	C50/60	N_{Rk}	[kN]	15.5	23.3	36.5	62.2	99.9	121.9	156.8	195.9
Shear	≥ C20/25	V_{Rk}	[kN]	11.0	17.4	25.3	47.1	<i>7</i> 3.5	105.9	137.7	168.3

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective and depth	horage	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-crack	ed concrete	•									
Tension	C20/25	N	[LVI]	12.2	19.3	28.1	45.8	72.7	99.8	121.9	145.5
	C50/60	N _{Rd}	[kN]	12.2	19.3	28.1	52.3	81. <i>7</i>	117.7	153.0	187.0
Shear	≥ C20/25	V_{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Cracked c	oncrete										
Tension	C20/25	NI	[LVI]	9.4	14.1	22.1	32.1	50.9	69.9	85.4	101.8
	C50/60	N _{Rd}	[kN]	10.3	15.6	24.3	41.5	66.6	81.3	104.5	130.6
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6

Recommended/ allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-crack	ced concrete	•									
Tension	C20/25	NI	[kN]	8.7	13.8	20.1	32.7	51.9	71.3	87.1	103.9
	C50/60	N _{rec}	[KIN]	8.7	13.8	20.1	37.4	58.3	84.0	109.3	133.6
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2
Cracked o	oncrete										
Tension	C20/25	N	[LVI]	6.7	10.1	15.8	22.9	36.3	49.9	61.0	72.7
	C50/60	N _{rec}	[kN]	7.4	11.1	17.4	29.6	47.6	58.1	74.6	93.3
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2

 $^{^{1)}}$ Material safety factor $\gamma_{\rm M}$ and safety factor for action $\gamma_{\rm L}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\scriptscriptstyle Rd,s}$

2. Pull-out failure $N_{Rdp} = N_{Rdp}^0 \cdot f_{bN} \cdot f_{hef} \cdot f_{sxp} \cdot f_{sxp} \cdot f_{cx1p} \cdot f_{cx2p} \cdot f_{cyp} \cdot f_{sus}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Design steel resistance	5.8	N _{Rd,s}		12.2	19.3	28.1	52.3	81. <i>7</i>	117.7	153.0	187.0
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}		13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance No. in case of combined pull-out and concrete cone failure of a single anchor

Rd,p			'							
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	22.8	32.0	44.2	62.8	99.7	137.2	176.4	220.5
Cracked concrete										
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	9.4	14.1	22.1	37.7	60.5	73.9	95.0	118.8

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$
 • $c_{cr,p} = s_{cr,p}/2$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{c,p}$ and spacing $s_{c,p}$ ($f_{sus}=1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,p}	[mm]	240	270	330	375	510	630	<i>7</i> 11	790
Edge distance	C _{cr,p}	[mm]	120	135	165	188	255	315	355	395

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,p, sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,p, sy,p	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy, p}																			

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	28.0	37.8	45.8	72.7	99.8	121.9	145.5
Cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	26.5	32.1	50.9	69.9	85.4	101.8

Table 9: Characteristic edge distance $c_{c,N}$ and spacing $s_{c,N}$

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.24	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

			-																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.42	0.65	0.40	0.70	0.72	0.75	0.70	0.00	0.03	0.05	0.88	0.85	0.88	0.95	0.98	1.00
f	0.55	0.56	0.60	0.03	0.63	0.08	0.70	0.73	0.73	0.78	0.80	0.63	0.63	0.00	0.63	0.00	0.93	0.96	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_$$

Table 13: Design resistance No. in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,sp}	[kN]	22.8	28.0	37.8	45.8	72.7	99.8	121.9	145.5

Table 14: Characteristic edge distance c and spacing s

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	214	266	300	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and \boldsymbol{h}_{\min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$

 $\textbf{3. Concrete edge failure} \qquad V_{\textit{Rd,c}} = V_{\textit{Rd,c}}^{\textit{0}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{pd}, of a single anchor

Thread size			10,5	M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
	5.8			8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
	A4			8.3	12.8	19.2	35.3	55.1	<i>7</i> 9.5	48.3	58.8

2. Design concrete pry-out resistance

$$V_{\scriptscriptstyle Rd,c} = k_{\scriptscriptstyle g} \cdot \min \left\{ N_{\scriptscriptstyle Rd,p}; N_{\scriptscriptstyle Rd,c} \right\}$$

Table 20: factor k_g for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\mathrm{Rd,c}} = \ V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{hef,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c1,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{0,1}^0$ in case of concrete edge failure

Rd,c case c										
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Basic design edge resistance	V ^O _{Rd,c}	[kN]	2.8	3.6	4.6	5.8	8.3	10.3	13.1	15.2
Cracked concrete										
Basic design edge resistance	V O Rd,c	[kN]	2.0	2.5	3.2	4.1	5.9	7.3	9.3	10.7

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

		,	_		_												
s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

c _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	8 <i>7</i> .35

²⁾ strength at 28 days of 150 mm cubes

e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

	0									
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C
Temperature range IV	- 40°C to +160°C	+100°C	+160°C

Service temperature for working life of 100 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C

Working life of 50 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of m	anual air cl	eaning (N	1AC)			
Temperature range I				9.4	9.4	8.9	8.3				
Temperature range II	Dry and wet con-	_	[N/mm²]	9.4	9.4	8.9	8.3	NI.	o porforma	ince assess	ad
Temperature range III	crete	τ _{Rd,ucr}	[14/11111]	8.3	7.8	7.8	7.2	19	о репоппа	ince assess	au .
Temperature range IV				6.7	6.1	6.1	5.6				
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanir	ig (CAC)			
Temperature range I				11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Temperature range II	Dry and	_	[N1/21	11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Temperature range III	wet con- crete	$\tau_{\text{Rd,ucr}}$		10.0	9.3	9.3	8.7	8.0	8.0	7.3	7.3
Temperature range IV				8.0	<i>7</i> .3	7.3	6.7	6.3	6.0	6.0	6.0
Design bond re	esistance in no	n-cracke	ed concrete	C20/25	in case of h	ollow drill b	it system (HDB)			
Temperature range I				9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Temperature range II	Dry and		[N/mm²]	9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Temperature range III	wet con- crete	τ _{Rd,ucr}	[14/mm-]	8.3	7.8	7.8	7.2	6.7	6.7	6.1	6.1
Temperature range IV				6.7	6.1	6.1	5.6	5.3	5.0	5.0	5.0
Design bond re	esistance in no	n-cracke	ed concrete	C20/25	in case of co	ompressed o	air cleanir	ng (CAC)			
Temperature range I	Flooded		ked concrete v	8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2
Temperature range II			[N1/2]	8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2
Temperature range III			, [N/mm²] -	<i>7</i> .1	6.7	6.7	6.2	5.7	5.7	5.2	5.2
Temperature range IV				5.7	5.2	5.2	4.8	4.5	4.3	4.3	4.3

2- Cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30	
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of m	anual air cl	eaning (N	1AC)				
Temperature range I				3.9	4.2	4.4	5.0					
Temperature range II	Dry and wet con-		[N/mm²]	3.9	4.2	4.4	5.0	N		nce assesse	- J	
Temperature range III	crete	$ au_{\text{Rd,ucr}}$	[14/11111]	3.3	3.6	3.9	4.2	IN	о репоппа	nce assesse	∌a	
Temperature range IV				3.1	3.1	3.3	3.6					
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanin	g (CAC)				
Temperature range I				4.7	5.0	5.3	6.0	5.7	4.7	4.7	4.7	
Temperature range II	Dry and wet con-	_	[N1/2]	4.7	5.0	5.3	6.0	5.7	4.7	4.7	4.7	
Temperature range III	crete	$\tau_{\text{Rd,ucr}}$	[N/mm²]	4.0	4.3	4.7	5.0	4.7	4.0	4.0	4.0	
Temperature range IV				3.7	3.7	4.0	4.3	4.0	3.7	3.7	3.7	
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of h	ollow drill b	it system (HDB)				
Temperature range I				3.9	4.2	4.4	5.0	4.7	3.9	3.9	3.9	
Temperature range II	Dry and wet con-	_	[N/mm²]	3.9	4.2	4.4	5.0	4.7	3.9	3.9	3.9	
Temperature range III	crete	$ au_{\text{Rd,ucr}}$	[14/mm-]	3.3	3.6	3.9	4.2	3.9	3.3	3.3	3.3	
Temperature range IV				3.1	3.1	3.3	3.6	3.3	3.1	3.1	3.1	
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanin	g (CAC)				
Temperature range I	Flooded bore hole		3.3	3.6	3.8	4.3	4.0	3.3	3.3	3.3		
Temperature range II			[N1/ 2]	3.3	3.6	3.8	4.3	4.0	3.3	3.3	3.3	
Temperature range III		· -	[N/mm ²] -	2.9	3.1	3.3	3.6	3.3	2.9	2.9	2.9	
Temperature range IV				2.6	2.6	2.9	3.1	2.9	2.6	2.6	2.6	

Working life of 100 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Design bond re	esistance in	non-cracke	ed concrete	C20/25	in case of m	anual air cle	eaning (M	IAC)			
Temperature range l	Dry and		[N.L./ 2]	9.4	9.4	8.9	8.3		ſ		
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm ²]	9.4	9.4	8.9	8.3	l No	performai	nce assesse	ed
Design bond re	esistance in	non-cracke	ed concrete	C20/25	in case of co	mpressed c	ir cleanin	g (CAC)			
Temperature range l	Dry and		[N1/ 2]	11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm ²]	11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Design bond re	esistance in	non-cracke	ed concrete	C20/25	in case of ho	ollow drill bi	t system (I	HDB)			
Temperature range l	Dry and		[N.L./ 2]	9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm ²]	9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Design bond re	esistance in	non-cracke	d concrete	C20/25	in case of co	mpressed c	ir cleanin	g (CAC)			
Temperature range l	Flooded			8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2
Temperature range II	hole	bore $\tau_{\text{Rd,ucr100}}$	[N/mm²]	8.1	8.1	7.6	7.1	6.7	6.2	6.2	6.2

2- Cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30		
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of mo	anual air cle	eaning (M	AC)					
Temperature range l	Dry and	_	[N/mm²]	3.1	3.3	3.6	3.6	NI-	f				
Temperature range II	wet con- crete	T _{Rd,ucr100}		3.1	3.3	3.6	3.6	INC	No performance assessed				
Design bond resistance in non-cracked concrete C20/25 in case of compressed air cleaning (CAC)													
Temperature range l	Dry and	_	[N1/2]	3.7	4.0	4.3	4.3	4.3	4.3	4.3	4.3		
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm²]	3.7	4.0	4.3	4.3	4.3	4.3	4.3	4.3		
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of ho	llow drill bit	t system (H	HDB)					
Temperature range l	Dry and		[N.L./ 2]	3.1	3.3	3.6	3.6	3.6	3.6	3.6	3.6		
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm ²]	3.1	3.3	3.6	3.6	3.6	3.6	3.6	3.6		
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of co	mpressed a	ir cleaning	g (CAC)					
Temperature range l	Flooded	T.	[N/mm ²]	2.6	2.9	3.1	3.1	3.1	3.1	3.1	3.1		
Temperature range II	$ ag{hole} ag{ ag{range}} ag{ ag{Rd,ucr100}}$		[14/mm ²]	2.6	2.9	3.1	3.1	3.1	3.1	3.1	3.1		

Reduction factors

Working life of 50 years

1-Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction facto	or for non-crac	ked cor	ncrete C20/	25 in cas	e of manual	air cleaning	(MAC)				
Temperature range I				1.00	1.00	1.00	1.00				
Temperature range II	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	N.	r		1
Temperature range III	wet con- crete	τ _{Rd,ucr}	[N/mm²]	0.88	0.82	0.88	0.87	IN	o pertorma	nce assesse	∍a
Temperature range IV				0.71	0.65	0.69	0.67				
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cled	aning (CA	.C)			
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Dry and	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	wet con- crete	τ _{Rd,ucr}	[14/11111]	0.88	0.82	0.88	0.87	0.86	0.92	0.85	0.85
Temperature range IV				0.71	0.65	0.69	0.67	0.68	0.69	0.69	0.69
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of hollow (drill bit syste	m (HDB)				
Temperature range I				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	wet con- crete	τ _{Rd,ucr}	[N/mm²]	0.88	0.82	0.88	0.87	0.86	0.92	0.85	0.85
Temperature range IV				0.71	0.65	0.69	0.67	0.68	0.69	0.69	0.69
Reduction facto	or for non-crac	ked cor	ncrete C20/	25 in cas	e of compre	ssed air cled	aning (CA	C)			
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Flooded bore hole	_	[N1/2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III		- Ιτ Ι	[N/mm ²]	0.88	0.82	0.88	0.87	0.86	0.92	0.85	0.85
Temperature range IV				0.71	0.65	0.69	0.67	0.68	0.69	0.69	0.69

2- Cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of manual	air cleaning	(MAC)					
Temperature range l				1.00	1.00	1.00	1.00					
Temperature range II	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	N.	r	nce assesse	1	
Temperature range III	wet con- crete	T _{Rd,ucr}	[N/mm ²]	0.86	0.87	0.88	0.83	IN	э регтогта	nce assesse	ea	
Temperature range IV				0.79	0.73	0.75	0.72					
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cle	aning (CA	AC)				
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Dry and	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	wet con- crete	T _{Rd,ucr}	[IN/mm]	0.86	0.87	0.88	0.83	0.82	0.86	0.86	0.86	
Temperature range IV				0.79	0.73	0.75	0.72	0.71	0.79	0.79	0.79	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of hollow (drill bit syste	em (HDB)					
Temperature range I				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Dry and		[N1 / 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	wet con- crete	T _{Rd,ucr}	[N/mm ²]	0.86	0.87	0.88	0.83	0.82	0.86	0.86	0.86	
Temperature range IV				0.79	0.73	0.75	0.72	0.71	0.79	0.79	0.79	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cle	aning (CA	(C)				
Temperature range I				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Flooded bore hole	_	[N1/2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III		т т	[N/mm²] -	0.86	0.87	0.88	0.83	0.82	0.86	0.86	0.86	
Temperature range IV				0.79	0.73	0.75	0.72	0.71	0.79	0.79	0.79	

Working life of 100 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction facto	or for non-ci	racked con	crete C20/2	25 in case	of manual	air cleaning	(MAC)				
Temperature range I	Dry and	_	[N/mm²]	1.00	1.00	1.00	1.00	Na		nce assesse	
Temperature range II	crete	T _{Rd,ucr100}	[14/11111]	1.00	1.00	1.00	1.00	INC	periorina	ice assesse	a .
Reduction facto	ction factor for non-cracked concrete C20/25 in case of compressed air cleaning (CAC)										
Temperature range I	Dry and	_	[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction facto	or for non-ci	racked con	crete C20/2	25 in case	of hollow o	Irill bit syste	m (HDB)				
Temperature range l	Dry and		[h / 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction facto	or for non-ci	racked con	crete C20/2	25 in case	of compres	sed air cled	ining (CA	C)			
Temperature range I	Flooded	_	[N1/21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	hole $\tau_{\text{Rd,ucr100}}$	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

2- Cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30	
Reduction facto	or for non-c	racked con	crete C20/2	.5 in case	of manual	air cleaning	(MAC)					
Temperature range I	Dry and wet con-	_	[N/mm²]	1.00	1.00	1.00	1.00	Na	performar			
Temperature range II	crete	τ _{Rd,ucr100}	[14/11111]	1.00	1.00	1.00	1.00	140	ď			
Reduction facto	or for non-c	racked con	crete C20/2	25 in case	of compres	sed air clea	ining (CAC	C)				
Temperature range I	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Reduction facto	or for non-c	racked con	crete C20/2	.5 in case	of hollow d	Irill bit syste	m (HDB)					
Temperature range I	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Reduction facto	or for non-c	racked con	crete C20/2	.5 in case	of compres	sed air clea	ining (CAC	C)				
Temperature range I	Flooded	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00 1.00		1.00	1.00	
Temperature range II	hole $ au_{ ext{Rd,ucr100}}$	[IN/MM ⁻]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

Mechanical characteristics

Steel grade	Thread size			M8	M10	M12	M16	M20	M24	M27	M30
	Stressed cross section	A,	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	9.0	18.0	31.1	79.6	1 <i>55.7</i>	268.9	398.8	538.9
	Yield strength	f	[N/mm ²]	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ^o _{Rd,s}	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	M _{Rd,s}	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-30	Design bending moment	M _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
A4-7 U	Design bending moment	M ⁰ _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation		Material								
Steel,	zinc plated (Steel acc. to	:N 10087:1998 or EN 10263:2001)									
- zinc p	lated ≥ 5 µm	acc. to EN ISO 4042:	c. to EN ISO 4042:1999								
- hot-dip	o galvanized ≥ 40 µm	acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009									
- sherar	dized ≥ 45 µm	acc. to EN ISO 17668	acc. to EN ISO 17668:2016								
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 8%					
1	Anchor rod	acc. to EN ISO 898-	4.8	f _{uk} = 400 N/mm ²	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%					
		1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%					
			5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A5 > 8%					
			8.8	f _{uk} = 800 N/mm ²	$f_{yk} = 640 \text{ N/mm}^2$	A5 > 12% 3)					
			4	for anchor rod class 4.6 or 4.8							
2	Hexagon nut	acc. to EN ISO 898- 2:2012	5	for anchor rod class 5.6 or 5.8							
			8	for anchor rod class 8.8							
3a	Washer	1 ' '		galvanized or sherardize EN ISO 7089:2000, EI	ed N ISO 7093:2000, or I	EN ISO 7094:2000)					
3b	Filling Washer	Steel, zinc plated, he	ot-dip g	galvanized or sherardize	ed						
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal threaded anchor	acc. to	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%					
	rod	EN ISO 898- 1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 8%					

Part	Designation	Material									
Stainl	Stainless steel A2 (Material 1.4301 / 1.4303 / 1.4307 / 1.4567 or 1.4541, acc. to EN 1088-1:2014)										
Stainl	ess steel A4 (Material 1.4	401 / 1.4404 / 1.45	71 / 1	.4362 or 1.4578, acc.	to EN 10088-1:2014)						
High o	corrosion resistance ste	el (Material 1.4529 d	r 1.45	65, acc. to EN 10088-	1:2014)						
	Anchor rod ^{1) 4)}	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
1		acc. to EN ISO 3506-	50	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 12% 3)					
		1:2009	70	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A5 > 12% 3)					
			80	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 12% 3)					
	Hexagon nut 1343	acc. to	50	for anchor rod class 50							
2		EN ISO 3506- 1:2009	70	for anchor rod class 70							
			80	for anchor rod class 80							
3a	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN								
3b	Filling Washer	Stainless steel A4, H	ligh co	rrosion resistance steel							
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal threaded anchor	acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%					
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A5 > 8%					

Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ $\,$ A $_{\!_{5}}\!>\!8\%$ fracture elongation if \underline{no} requirement for performance category C2 exists

⁴⁾ Property class 80 only for stainless steel A4

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistant
Air		•	
Acetic acid	10	•	
Ammonia, aqueous solution	5	•	
Chlorinated lime	10	•	
Citric acid	10	•	
Demineralized Water	100	•	
Diesel Fuel	100	•	
Ethanol	100		•
Ethyl Acetate	100		•
Fuel Oil	100	•	
Gasoline	100	•	
Hydraulic fluid	100	•	
Isopropyi alcohol	100		•
Lactic acid	10	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Methanol	100		•
Phosphoric acid	10	•	
Potassium Hydroxide pH 13.2	100	•	
Salt (Calcium Chloride)	100	•	
Sea water	100	•	
Sodium Carbonate	10	•	
Sulfuric acid	10	•	

Properties of adhesive

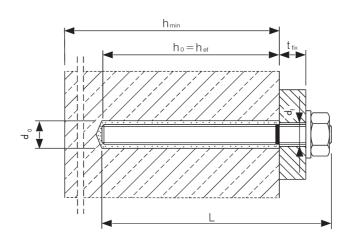
Property		Testing method	Result/Mean Value
Stability			
UV-resistance (sunlight)			Resistant
Temperature stability			≤ 160°C
Physical properties			
Flexural properties	Flexural strength	DIN FN 107 1	after 24 hours: 22.2 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: 126 N/mm²
	Tensile strength		14.9 N/mm²
Tensile properties	Coefficient of elasticity	DIN EN ISO 527-2	8300 N/mm ²
	Mean strain at fracture		2.6%
Shrinkage		DIN 52450	< 1.8 %
Shore-hardness A		DIN EN ISO 868	97.6
Density		Weighing	1.78 kg/dm³
Thermal conductivity		DIN EN 993-15	1.06 W/mK
Specific heat capacity		DIIN EIN 993-13	1.09 J/Kg K
Electrical resistance		DIN IEC 93	7.2 . 10 ¹³ Ω
Workability features	i		
Working time (20°C)			3 min
Curing time (20°C)			30 mins
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

Working and curing times

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C to -1°C	50 min	5 h
0°C to 4°C	25 min	3.5 h
5°C to 9°C	15 min	2 h
10°C to 14°C	10 min	60 min
15°C to 19°C	6 min	40 min
20°C to 29°C	3 min	30 min
30°C to 40°C	2 min	30 min

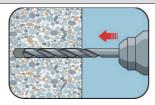
¹⁾ for wet base material the curing time must be doubled

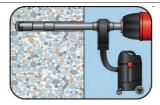


Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Eff is 1 in	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance in hole in the fixture 1)	Prepositioned installation d _{f≤}	[mm]	9	12	14	18	22	26	30	33
	Push through installation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque moment	max T _{inst} ≤	[Nm]	10	20	40 2)	60	100	170	250	300
Minimum thickness of member	h _{min}		h _{ef} + 3	0 mm ≥ 1	00 mm			h _{ef} + 2d ₀		
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d1 + 1 mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar


 $^{^{\}rm 2)}$ Maximum Toruqe moment for M12 with steel Grade 4.6 is 35 Nm



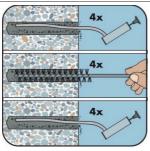
Installation instructions

A) Bore hole drilling

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar.

Proceed with Step B. In case of aborted drill hole, the drill hole shall be filled with mortar.


1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected anchor. This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step C.

In case of aborted drill hole, the drill hole shall be filled with mortar.

B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d_{nom} (non-cracked concrete only!)

- Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of four times.
- Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times in a twisting motion.

 If the bore hole ground is not reached with the brush, a
- **2c.** Finally blow the hole clean again with a hand pump a minimum of four times.

brush extension shall be used.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameters non-cracked and cracked concrete

- Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against rec-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

C) Preparation of anchor rod and cartridge 3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used. 3b. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod. 3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components. D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times. Piston plugs and mixer nozzle extensions hall be used for the following applications: · Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth • Overhead assembly (vertical upwards direction): Drill bit- \emptyset d₀ \ge 18 mm

E) Setting the anchor rod		
	5a.	Push the threaded rod into the bore hole while turning slightly to ensure positive distribution of the adhesive unti the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.
	5b.	After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through installation, additionally also the fixture, must be completely filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).
30 Min.	5c.	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.
	5d.	After fully curing, the add-on part can be installed with u to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when mortar oozes out of the washer.

Filling Quantity

Anchor type: M8 - M30

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Drill depth	h _o / h ₁	[mm]] = h _{ef}							
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	3.22	5.10

Assumed waste of 15 % included.

