

Ø8-Ø32

Rebar not supplied by Würth

Ap	prove	d for:
	PI 0 1 C	

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	e sizes	Art. no.
440 ml	side-by-side	5918 605 440
585 ml	side-by-side	5918 605 585
1400 ml	side-by-side	5918 605 140

Installation condition	1	
Dry concrete	Wet concrete	Flooded drill hole
1	1	1
Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	1	1

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt. Berlin	EAD 330499-01-0601	ETA-19/0542, 06.11.2020
European Technical Assessment	DIBt. Berlin	EAD 330087-00-0601	ETA-19/0543, 17.04.2020
ICC-ES Evaluation Report	ICC	AC 308	ELC-4757, 05.2021
Fire resistance	Ingenieurbüro Thiele	TR 020	22022. 14.05.2020
LEED	eurofins		19.09.19
VOC Emissions Test report	eurofins	DEVL 1101903D. DEVL 1104875A	19.09.19
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$

Characteristic resistance

- Concrete C 50/60, f_{ck} = 60 N/mm²
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete													
Tension	C20/25	NI	[IN]	27.5	42.0	56.8	68.8	68.8	109.0	149.7	149.7	218.2	255.6
	C50/60	N _{rk}	[kN]	27.5	43.5	62.2	84.7	108.7	172.4	236.7	236.7	338.8	404.2
Shear	≥ C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1
Cracked c	oncrete												
Tension	C20/25	NI	[IN]	14.1	19.8	35.2	46.7	48.1	76.3	104.8	104.8	152.8	178.9
	C50/60	N _{rk}	[kN]	15.5	21.8	38.8	51.4	58.7	99.9	148.0	154.2	222.1	282.2
Shear	≥ C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crack	Non-cracked concrete												
Tension	C20/25	NI	[kN]	19.6	28.0	37.8	45.8	45.8	72.7	99.8	99.8	145.5	170.4
	C50/60	N _{Rd}	[KIN]	19.6	31.0	44.4	60.5	72.5	114.9	157.8	157.8	230.1	269.4
Shear	≥C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4
Cracked a	oncrete												
Tension	C20/25	NI	[IN]	9.4	13.2	23.5	31.2	32.1	50.9	69.9	69.9	101.8	119.3
	C50/60	N _{Rd}	[kN]	10.3	14.5	25.8	34.3	39.2	66.6	98.7	102.8	148.0	188.0
Shear	≥C20/25	$V_{_{Rd}}$	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

Recommended/allowable loads ¹⁾

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crac	Non-cracked concrete												
Tension	C20/25	NI	[IN]	14.0	20.0	27.0	32.7	32.7	51.9	71.3	71.3	103.9	121.7
	C50/60	N _{rec}	[kN]	14.0	22.2	31.7	43.2	51.8	82.1	112.7	112.7	164.3	192.5
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80.7	105.3
Cracked a	oncrete												
Tension	C20/25		[]]]	6.7	9.4	16.8	22.3	22.9	36.3	49.9	49.9	72.7	85.2
	C50/60	N _{rec}	[kN]	7,4	10.4	18.5	24.5	28.0	47.6	70.5	73.4	105.7	134.3
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80.7	105.3

^{1]} Material safety factor $\gamma_{\rm M}$ and safety factor for action $\gamma_{\rm L}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures -Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4. For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure	$N_{_{Rd,s}}$		
2. Pull-out failure	$N_{_{Rd,p}}$	=	$N^{0}_{Rd,p} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$
3. Concrete cone failure	$N_{_{Rd,c}}$	=	$N^{0}_{Rd,c} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,} \cdot f_{cy}$
4. Concrete splitting failure	N _{Rd,sp}	=	$N^{0}_{Rd,sp} \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	177.6	192.9	242.0	315.9

 $\cdot f_{h}$

2. Design combined pull-out and concrete cone resistance

 $N_{\rm Rd,p} = N^0_{\rm Rd,p} \cdot f_{\rm b,N} \cdot f_{\rm hef} \cdot f_{\rm sx,p} \cdot f_{\rm sy,p} \cdot f_{\rm cx,1,p} \cdot f_{\rm cx,2,p} \cdot f_{\rm cy,p} \cdot f_{\rm sus}$

Table 2: Basic design resistance $N^{o}_{_{Rd_{p}}}$ in case of combined pull-out and concrete cone failure of a single anchor

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
e											
N ⁰ _{Rd,p}	[kN]	21.4	30.2	44.2	58.6	67.0	113.9	158.3	164.9	237.5	301.6
N ⁰ _{Rd,p}	[kN]	9.4	13.2	23.5	31.2	35.6	60.5	89.7	93.5	134.6	170.9
	N ⁰ _{Rd,p}	er L J	h _{ef} [mm] 80 N ⁰ _{Rd,p} [kN] 21.4	h _{ef} [mm] 80 90 N Rd,p [kN] 21.4 30.2	h _{ef} [mm] 80 90 110 N Rd,p [kN] 21.4 30.2 44.2	h _{ef} [mm] 80 90 110 125 N Rdp [kN] 21.4 30.2 44.2 58.6	h _{ef} [mm] 80 90 110 125 125 N Rd,p [kN] 21.4 30.2 44.2 58.6 67.0	h _{ef} [mm] 80 90 110 125 125 170 N Rd,p [kN] 21.4 30.2 44.2 58.6 67.0 113.9	h _{ef} [mm] 80 90 110 125 125 170 210 N _{Rdp} [kN] 21.4 30.2 44.2 58.6 67.0 113.9 158.3	h _{ef} [mm] 80 90 110 125 125 170 210 210 N _{Rdp} [kN] 21.4 30.2 44.2 58.6 67.0 113.9 158.3 164.9	h _{ef} [mm] 80 90 110 125 125 170 210 210 270 N Rdp [kN] 21.4 30.2 44.2 58.6 67.0 113.9 158.3 164.9 237.5

• $s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$ • $c_{cr,p} = s_{cr,p}/2$

Where $\tau_{_{Rk}}$ is the value $\tau_{_{Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance c_{crp} and spacing s_{crp} ($f_{sus} = 1$)

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Spacing	S _{cr,p}	[mm]	234	270	330	375	375	510	630	630	792	900
Edge distance	C _{cr,p}	[mm]	117	135	165	188	188	255	315	315	396	450

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef,typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx,p} , f _{sy,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,p,} f _{sy,p}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p} , f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1 \qquad \qquad f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2} f _{cy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

N_{susd} = design value of sustained actions (permanent actions & permanent component of variable actions)

 N_{Ed} = Value of total actions in tension loading at ultimate limit state

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80

3. Design concrete cone resistance

 $N_{Rd,c} = N^0_{Rd,c} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2 c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{_{k}} \le 0.3$ mm

Table 8: Basic design resistance N⁰_{Pdc} in case of concrete cone failure of a single anchor

		Rd,c												
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300		
Non-cracked concrete														
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	28.0	37.8	45.8	45.8	72.7	99.8	99.8	145.5	170.4		
Cracked concrete														
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	26.5	32.1	32.1	50.9	69.9	69.9	101.8	119.3		

Table 9: Characteristic edge distance c_{an} and spacing s_{an}

		cr,IN	1	Cr,IN								
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Spacing	\$ _{cr,N}	[mm]	240	270	330	375	375	510	630	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef} and c_{cr,N} = 1.5 h_{ef}$$

a. Influence of concrete strength

Table 10: Influence of a	concrete strenath on	concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

^{2]} strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef, typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef.min} \le h_{ef} \le h_{ef.max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥]
2	$f_{sx'} f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	$f_{sx'}f_{sy}$	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	$f_{sx'}f_{sy}$	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

Table 11: Influence of spacing on concrete cone resistance

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥]
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2} f _{cy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

$N_{\textit{Rd,sp}} = N^{\textit{0}}_{\textit{Rd,sp}} \cdot f_{\textit{b,N}} \cdot f_{\textit{hef}} \cdot f_{\textit{sx,sp}} \cdot f_{\textit{sy,sp}} \cdot f_{\textit{cx,1,sp}} \cdot f_{\textit{cx,2,sp}} \cdot f_{\textit{cy,sp}} \cdot f_{\textit{h}}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete	•											
Splitting resistance	N ⁰ _{Rd,sp}	[kN]	21.4	28.0	37.8	45.8	45.8	72.7	99.8	99.8	145.5	170.4

Table 13: Design resistance N_{Pd so} in case of concrete splitting failure of a single anchor

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

	-		,sp I	Cr,s	2							
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	142	161	165	218	274	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \cdot c_{cr,sp}$$
 and $c_{cr,sp} = \left\{ h_{ef} \le 2 h_{ef} \cdot \left(2.5 - \left(\frac{h_{min}}{h_{ef}} \right) \right) \le 2.4 h_{ef} \right\}$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

Table 15: Influence of concrete strength on splitting resistance

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

 $\label{eq:consider} \text{Consider the approved range of embedment } \textbf{h}_{\text{ef,min}} \leq \textbf{h}_{\text{ef}} \leq \textbf{h}_{\text{ef,max}} \text{ according to the table ,, anchor characteristics''}.$

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right)\frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx,sp} , f _{sy,sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,sp} , f _{sy,sp}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,sp} , f _{sy,sp}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,sp} , f _{sy,sp}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$

$$f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp} f _{cy, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

- 1. Steel failure V_{Rds}
- 2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$
- 3. Concrete edge failure $V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{c1,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Design steel resistance	V _{Rd,s}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

2. Design concrete pry-out resistance

 $V_{Rd,c} = k_8 \cdot \min\{N_{Rd,p}; N_{Rd,c}\}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\textit{Rd,c}} = V^{0}_{\textit{Rd,c}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete	9											
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.6	5.8	8.3	12.2	12.2	14.3	17.2
Cracked concrete												
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.0	2.5	3.2	4.0	4.1	5.9	8.6	8.6	10.2	12.2

Table 21: Design resistance V^{0}_{Rdc} in case of concrete edge failure

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

		-	-	/		•						
c1/q	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c₂ on concrete edge resistance

c_1)	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

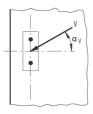
 $^{1]}$ Distance to the second edge: $\mathbf{c_1} \leq \mathbf{c_2}$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00


¹) For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

WIT-PE 1000 R

Structural verification

- N_{Ed} = Design value of tension load acting on a fastener
- V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} & \left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ & \text{or} \\ & \left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ & \text{With } N_{ed} \ / \ N_{Rd,i} \leq 1 \ \text{and} \ V_{ed} \ / \ V_{Rd,i} \leq 1 \\ & \text{The largest value of } N_{ed} \ / \ N_{Rd,i} \ \text{and} \ V_{ed} \ / V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range l	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +72°C	+50°C	+72°C

Working life of 50 years

1- Non-cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in n	ion-crac	ked concret	e C20/2	5 in ham	mer drille	d holes (HD) and	compress	ed air dr	illed hole	s (CD)	
Temperature range l	Dry and			10.7	10.7	10.7	10.7	10.7	10.7	10.0	10.0	10.0	10.0
Temperature range II	wet concrete		[N1/ 2]	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.3	7.3
Temperature range l	Flooded	$\tau_{\rm Rd,ucr}$	[N/mm²]	8.9	8.9	8.9	8.9	8.9	8.9	8.3	8.3	8.3	8.3
Temperature range II	bore hole			6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.1	6.1
Design bond	Design bond resistance in non-cracked concr					mer drille	d holes v	vith hollo	w drill bit	(HDB)			
Temperature range l	Dry and wet			9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Temperature range II	concrete	_	[N/mm²]	8.0	8.0	8.0	7.3	7.3	7.3	7.3	7.3	7.3	7.3
Temperature range l	Flooded	$ au_{Rd,ucr}$		7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range II	bore hole			6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Design bond	resistance in n	ion-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	g (CAC)				
Temperature range l	Dry and			9.3	8.7	8.7	8.7	8.0	8.0	7.3	7.3	7.3	7.3
Temperature range II	concrete	wet	[N1/2]	7.3	7.3	6.7	6.7	6.7	6.3	6.3	6.3	6.0	6.0
Temperature range l	Rd,ucr		7.8	7.2	7.2	7.2	5.7	5.7	5.2	5.2	5.2	5.2	
Temperature range II		-	6.1	6.1	5.6	5.6	4.8	4.5	4.5	4.5	4.3	4.3	

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond drill bit (HDB)	Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)												
Temperature range l	Dry and			4.7	4.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Temperature range II	wet concrete Theoded		[N/mm²]	4.0	4.0	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Temperature range l		Rd,cr	[14/ mm]	3.9	3.9	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Temperature range II	bore hole			3.3	3.3	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9

Working life of 100 years

1-Non-cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in ham	mer drille	d holes (HD) and	compress	sed air dr	illed hole	s (CD)	
Temperature range l	Dry and			10.7	10.7	10.7	10.7	10.7	10.7	10.0	10.0	10.0	10.0
Temperature range II	wet concrete		[N1/ 2]	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.3	7.3
Temperature range l	Flooded	$\tau_{\rm Rd,ucr}$	[N/mm ²]	8.9	8.9	8.9	8.9	8.9	8.9	8.3	8.3	8.3	8.3
Temperature range II	bore hole			6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.1	6.1
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in ham	mer drille	d holes v	vith hollo	w drill bit	(HDB)			
Temperature range l	Dry and			9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Temperature range II	wet concrete		[N/mm²]	8.0	8.0	8.0	7.3	7.3	7.3	7.3	7.3	7.3	7.3
Temperature range l	Flooded	$\tau_{\rm Rd, ucr}$		7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range II	bore hole			6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	g (CAC)				
Temperature range l	Dry and			9.3	8.7	8.7	8.7	8.0	8.0	7.3	7.3	7.3	7.3
Temperature range II	Flooded	$- \tau_{\rm Rd,ucr}$ [N/mm ²]	[N] /21	7.3	7.3	6.7	6.7	6.7	6.3	6.3	6.3	6.0	6.0
Temperature range l			.r [N/mm²] -	7.8	7.2	7.2	7.2	5.7	5.7	5.2	5.2	5.2	5.2
Temperature range II	bore hole			6.1	6.1	5.6	5.6	4.8	4.5	4.5	4.5	4.3	4.3

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32	
Design bond drill bit (HDB)	Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)													
Temperature range l	Dry and			4.3	4.3	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Temperature range II	wet concrete T _p Flooded	concrete		[N1/ 2]	3.7	3.7	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Temperature range III		$\tau_{\rm Rd,cr}$	[N/mm²]	3.6	3.6	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
Temperature range III	bore hole			3.1	3.1	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	

Reduction factors

Working life of 50 years

1-Non-cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac	tor for non-crc	icked co	oncrete C2C	/25 in ho	ammer dı	rilled hole	s (HD) a	nd compi	ressed air	drilled h	oles (CD)	
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N/mm ²]	0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73
Temperature range l	Flooded	$\tau_{\rm Rd,ucr}$	[IN/ mm ⁻]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73
Reduction fac	eduction factor for non-cracked concrete C2				ammer dı	illed hole	s with ho	llow drill	bit (HDB)			
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N1/ 2]	0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Temperature range l	Flooded	$\tau_{\rm Rd,ucr}$	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Reduction fac	tor for non-crc	acked co	oncrete C2C	/25 in co	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete	wet		0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82
Temperature range l	Rd,ucr		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II				0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82	

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction factor for cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bi (HDB)											drill bit		
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete Flooded		[N/mm²]	0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Temperature range l		$ au_{\rm Rd,cr}$	[14/ mm-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II				0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82

Working life of 100 years

1-Non-cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in h	ammer dr	illed hole	es (HD) a	nd compr	ressed air	drilled h	oles (CD)	
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N/mm²]	0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73
Temperature range l	Flooded	$\tau_{\rm Rd,ucr}$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73
Reduction fac	Reduction factor for non-cracked concrete C20/25 in hammer drilled holes with hollow drill bit (HDB)												
Temperature range l	Dry and		[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete			0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Temperature range l	Flooded	$\tau_{\rm Rd, ucr}$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in c	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete	-	[N1/mm ²¹	0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82
Temperature range l	Flooded	$\tau_{_{Rd,ucr}}$	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac (HDB)	Reduction factor for cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)												drill bit
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N/mm²]	0.85	0.85	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Temperature range III	Flooded	$\tau_{\rm Rd,cr}$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	bore hole			0.85	0.85	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87

Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm ³]	50	98	170	269	402	785	1357	1534	2155	3217
	Yield strength	f	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm²]	483	483	483	483	483	483	483	483	483	483
	Design bending moment	$M^{\mathrm{O}}_{\mathrm{Rd,s}}$	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	$M^{\mathrm{O}}_{\mathrm{Rd,s}}$	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f	[N/mm²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	$M^{O}_{Rd,s}$	[Nm]	22	43	75	118	177	345	597	675	948	1415

Material specifications

Product form			Bars and de-coiled rod	ls						
Class		Α	A B Y							
Characteristic yield strer	ngth f _{yk} or f _{0,2k} (MPa)	400 to 600								
Minimum value of k = (f	(,/f _y) _k	≥ 1,05	≥ 1,05 ≥ 1,08 ≥							
Characteristic strain at n	naximum force, ε _{uk} (%)	≥ 2,5	≥ 7,5							
Bendability			Bend/Rebend test							
Maximum deviation from nominal mass	Nominal bar size (mm)									
(individual bar or wire) (%)	≤ 8 > 8	+/- 6,0 +/- 4,5								

Chemical resistance

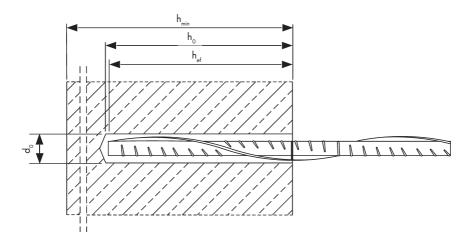
Chemical agent	Concentration	Resistant	Not Resistan
Acetic acid (Vinegar)	40		•
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer	100	•	
Benzine (kp 100-140°F)	100	•	
Benzene	100		•
Boric Acid, aqueous solution		•	
Calcium carbonate, suspended in water	All	•	
Calcium chloride, suspended in water		•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda (Sodium hydroxide)	40	•	
Citric acid	All	•	
Chlorine	All	•	
Diesel oil	100	•	
Ethyl alcohol, aqueous solution	50		•
	30	•	
Formaldehyde, aqueous solution		•	-
Formic acid (Methanoic acid)	100	-	•
Formic acid (Methanoic acid)	10	•	
Freon		•	
Fuel Oil		•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydrogen peroxide	30		•
Hydrochloric acid (Muriatic Acid)	Conc.		•
Isopropyl alcohol	100		•
Lactic acid	All		•
Laitance		•	
Linseed oil	100	•	
Lubricating oil	100	•	
Magnesium chloride, aqueous solution	All	•	
Methanol	100		•
Motor oil (SAE 20 W-50)	100	•	
Nitric acid	10		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution (Carbonic acid)	8		•
Phosphoric acid	85	•	
Phosphoric acid	10	•	
Potash lye (potassium hydroxide, 10% and 40% solutions)		•	-
Potassium carbonate, aqueous solution	All		1
Potassium chlorite, aqueous solution	All	•	
Potassium nitrate, aqueous solution	All	•	
Sodium carbonate, aqueous solution	All	•	
Sodium carbonate, aqueous solution Sodium chloride, aqueous solution	All	•	
Sodium chioride, aqueous solution Sodium phosphate, aqueous solution	All	•	
		•	
Sodium silicate	All		-
Sulfuric acid	30	-	•
Tartaric acid	All	•	
Tetrachloroethylene	100	•	
Toluene			•
Turpentine	100	•	
Trichloroethylene	100		•

Properties of adhesive

Property		Testing method	Result / Mean value
Stability			
UV-resistance (sunlight)			resistant
Temperature resistance			72°C
Water resistance			resistant
Physical properties			
Flexural properties	Flexural strength		after 24 hours: 66,0 N/mm ²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: 122 N/mm ²
	Tensile strength		44,2 N/mm ²
Tensile properties	Coefficient of elasticity	DIN EN ISO 527-2	6,300 N/mm ²
	Mean strain at fracture		1,0 %
Shrinkage		DIN 52450	≤ 1,4 ‰
Shore-hardness A		DIN EN ISO 868	99,4
Shore-hardness D		DIN EN ISO 808	86,1
Density		Weighing	≤ 1,50 kg/dm³
Thermal conductivity		DIN EN 993-15	0,50 W/mK
Specific heat capacity		DIN EN 993-13	1,350 J/Kg K
Electrical resistance		DIN IEC 93	8,0 . 10 ₁₂ Ω
Workability features	5		
Water tightness / impermeability		DIN EN 12390-8	0 mm
Working time (20°C)			3 min
Curing time (20°C)			30 mins
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

Working and curing times

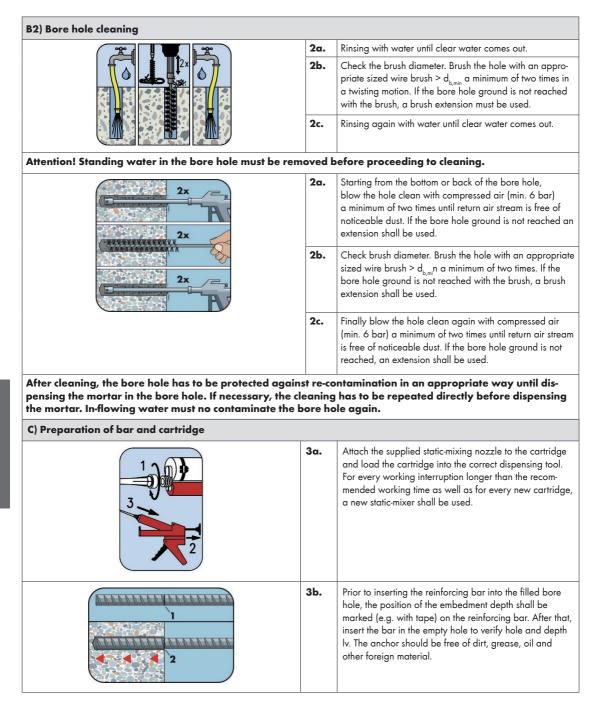

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
0°C to 4°C	90 min	144 h
5°C to 9°C	80 min	48 h
10°C to 14°C	60 min	28 h
15°C to 19°C	40 min	18 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	9 h
35°C to 39°C	8 min	6 h
+40°C	8 min	4 h

¹⁾ for wet base material the curing time must be doubled

Installation parameters

Rebar size			ø	8 1)	Ø١	Ø 10 ¹⁾		12 ¹⁾	Ø 14	Ø 16	Ø 20	ø	2 4 1)	Ø2	2 5 1)	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	3	1	10		2	14	16	20	2	4	2	5	28	32
Nominal drill hole diameter	d _o	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
Effective anchorage	h _{ef,min}	[mm]	6	0	6	0	7	0	75	80	90	9	6	10	00	112	128
depth	h _{ef,max}	[mm]	16	50	20	00	24	40	280	320	400	48	30	50	00	560	640
Minimum thickness of member	h _{min}	[mm]			30 n 00 m						h	_f + 2	d₀				
Minimum spacing	\$ _{min}	[mm]	4	0	5	50		0	70	75	85	12	20	12	20	130	150
Minimum edge distance	с _{тіп}	[mm]	3	5	4	0	4	5	50	50	60	7	0	7	0	75	85

1) both nominal drill hole diameter can be used



Installation instructions

A) Bore hole drilling						
	1a.	Hammer (HD) or compressed air drilling (CD) Drill a hole into the base material to the size and em- bedment depth required by the selected reinforcing bar. Proceed with Step B1.				
	1Ь.	Hollow drill bit system (HDB) Drill a hole into the base material to the size and embed- ment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.				
	1c.	Diamond drilling (DD) Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor. Proceed with Step B2.				
B1) Bore hole cleaning CAC: Cleaning for all bore hole diameter and bore hole depth w	vith drilling n	pethod HD and CD				
	2 a.	Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.				
	2b.	Check brush diameter. Brush the hole with an approprisized wire brush > d _{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brus extension shall be used.				

2c.

	Зс.	Prior to dispensing into the bore hole, squeeze out separa- tely the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components.
D) Filling the bore hole		
	4.	Starting from the bottom or back of the cleaned bore hole, fill the hole with adhesive until the level mark at the mixer extension is visible at the top of the hole. For embedment larger than 190 mm, an extension nozzle shall be used. Slowly withdraw the static mixing nozzle. Using a piston plug during injection of the mortar helps to avoid creating air pockets. For overhead and horizontal installation and bore holes deeper than 240 mm, a piston plug and the appropriate mixer extension must be used. Observe the gel-/working times.
E) Setting the rebar	1	
	5α.	Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.
	5Ь.	Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation, fix embedded part (e.g. with wedges).
+20°C	5c.	Observe gelling time t _{gel} . Attend that the gelling time can vary according to the base material temperature. Do not move or load the bar until full curing time t _{cure} has elapsed.

Filling Quantity

Anchor type: M8 - M30

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40	
Drill depth	h _o / h ₁	[mm]		=									
Filling volume per 10mm embedment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62	

Assumed waste of 15 % included.

