

440 ml

585 ml

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Ap	proved	for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	ge sizes	Art. no.
440 ml	side-by-side	5918 615 440
585 ml	side-by-side	5918 615 585

Type of installation		
Pre-positioned	In-place	Stand-off
 ✓ 	1	1

Installation condition

Dry concrete	Wet concrete	hole
<i>v</i>	✓	v

Drilling method

Hammer drill	Diamond drill	Hollow drill
√	-	✓

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt. Berlin	EAD 330499-01-0601	ETA-20/1038.02.02.2021

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Anchor material according is to specifications. steel grade 5.8 unless otherwise stated
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete											
Tension	C20/25	N		18.0	29.0	42.0	68.8	109.0	149.7	182.9	218.2
	C50/60	N _{rk}	[kN]	18.0	29.0	42.0	78.0	122.0	176.0	230.0	280.0
Shear	≥C20/25	V _{Rk}	[kN]	11.0	17.0	25.0	47.0	74.0	106.0	138.0	168.0
Cracked concrete											
Tension	C20/25	NI	[I.N.I]	14.1	19.8	29.0	44.0	74.8	95.0	122.1	152.7
	C50/60	IN _{Rk}	N _{Rk} [kN]	15.5	21.8	31.9	48.4	82.2	104.5	134.4	167.9
Shear	≥C20/25	V _{Rk}	[kN]	11.0	17.0	25.0	47.0	74.0	106.0	138.0	168.0

Characterstic resistance

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete											
Tension	C20/25	NI	EL NIT	12.0	19.3	27.0	32.7	51.9	71.3	87.1	103.9
	C50/60	N _{Rd}	[kN]	12.0	19.3	28.0	46.1	78.3	107.8	137.7	164.3
Shear	≥C20/25	V _{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8	110.4	134.4
Cracked concrete											
Tension	C20/25	NI	EL NIT	6.7	9.4	13.8	20.9	35.6	45.2	58.2	72.7
	C50/60	N _{Rd}	[kN]	7.4	10.4	15.2	23.0	39.2	49.8	64.0	80.0
Shear	≥C20/25	V _{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8	110.4	134.4

WIT-PE 510 M

Recommended/allowable loads ¹⁾

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete											
Tension	C20/25	NI	[]]]	8.6	13.8	19.3	23.4	37.1	50.9	62.2	74.2
	C50/60	N _{rec}	[kN]	8.6	13.8	20.0	32.9	56.0	77.0	98.4	117.4
Shear	≥C20/25	V	[kN]	6.3	9.7	14.3	26.9	42.3	60.6	78.9	96.0
Cracked concrete											
Tension	C20/25	NI	[]]]	4.8	6.7	9.9	15.0	25.4	32.3	41.5	51.9
	C50/60	N _{rec}	[kN]	5.3	7.4	10.9	16.5	28.0	35.5	45.7	57.1
Shear	≥ C20/25	V _{rec}	[kN]	6.3	9.7	14.3	26.9	42.3	60.6	78.9	96.0

¹⁾ Material safety factor γ_{M} and safety factor for action γ_{L} = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures -Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4. For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure	$N_{_{Rd,s}}$	
2. Pull-out failure	$N_{_{Rd,p}} =$	$N^{0}_{Rd,p} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$
3. Concrete cone failure	$N_{_{Rd,c}} =$	$N^{0}_{Rd,c} \cdot f_{b,N} \cdot f_{hef} \cdot f_{ss} \cdot f_{sy} \cdot f_{cs,1} \cdot f_{cs,2} \cdot f_{cy}$
4. Concrete splitting failure	$N_{_{Rd,sp}} =$	$N^{0}_{Rd,sp} \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Design steel resistance	5.8	N _{Rd,s}	[kN]	12.0	19.3	28.0	52.0	81.3	117.3	153.3	186.7
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}	[kN]	13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

2. Design combined pull-out and concrete cone resistance

$N_{\textit{Rd},\textit{p}} = N^{\textit{0}}_{\textit{Rd},\textit{p}} \cdot f_{\textit{b},\textit{N}} \cdot f_{\textit{hef}} \cdot f_{\textit{sx},\textit{p}} \cdot f_{\textit{sy},\textit{p}} \cdot f_{\textit{cx},\textit{1},\textit{p}} \cdot f_{\textit{cx},\textit{2},\textit{p}} \cdot f_{\textit{cy},\textit{p}} \cdot f_{\textit{sus}}$

Table 2: Basic design resistance $N^{o}_{_{Rd_{p}}}$ in case of combined pull-out and concrete cone failure of a single anchor

Thread size			M 8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	14.4	20.2	29.6	41.9	71.2	98.0	126.0	157.5
Cracked concrete										
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	6.7	9.4	13.8	20.9	35.6	45.2	58.2	72.7

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$
 • $c_{cr,p} = s_{cr,p}/2$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr,p}$ and spacing $s_{cr,p}$ ($f_{sus} = 1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	\$ _{cr,p}	[mm]	226	270	330	375	510	630	711	790
Edge distance	C _{cr,p}	[mm]	113	135	165	188	255	315	355	395

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{\rm 1]}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, typ}}$$

 $\label{eq:consider} \text{Consider the approved range of embedment } \textbf{h}_{\text{ef,min}} \leq \textbf{h}_{\text{ef}} \leq \textbf{h}_{\text{ef,max}} \text{ according to the table ,, installation parameters''}.$

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right)\frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx,p,} f _{sy,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,p,} f _{sy,p}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p} , f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1 \qquad \qquad f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx, 1, p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, p} f _{cy, p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

N_{sus,d} = design value of sustained actions (permanent actions & permanent component of variable actions)

 N_{Ed} = Value of total actions in tension loading at ultimate limit state

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design Concrete Cone Resistance

 $N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2 c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance $N^{o}_{_{Rdc}}$ in case of concrete cone failure of a single anchor

Rd,c					0					
Thread size			M 8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.8	20.0	27.0	32.7	51.9	71.3	87.1	103.9
Cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.7	14.0	18.9	22.9	36.3	49.9	61.0	72.7

Table 9: Characteristic edge distance $c_{_{cr,N}}$ and spacing $s_{_{cr,N}}$

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	s _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

 $s_{cr,N} = 3 h_{ef} and c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

^{2]} strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Number of fixing per direction	s/s _{cr,p} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	$f_{sx'} f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	$f_{sx'} f_{sy}$	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

Table 11: Influence of spacing on concrete cone resistance

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2} f _{cv}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

$N_{\rm Rd,sp} = N^{0}_{\rm Rd,sp} \cdot f_{\rm b,N} \cdot f_{\rm hef} \cdot f_{\rm sx,sp} \cdot f_{\rm sy,sp} \ \cdot f_{\rm cx,1,sp} \cdot f_{\rm cx,2,sp} \ \cdot f_{\rm cy,sp} \cdot f_{\rm h}$

Table 13: Design resistance $N_{\rm _{Rd,sp}}$ in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete splitting resistance	N ⁰ _{Rd,c}	[kN]	14.4	20.0	27.0	32.7	51.9	71.3	87.1	103.9

Table 14: Characteristic edge distance c_{cr.sp} and spacing s_{cr.sp}

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	218	266	304	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \cdot c_{cr,sp}$$
 and $c_{cr,sp} = \left\{ h_{ef} \leq 2 h_{ef} \cdot \left(2.5 - \left(\frac{h_{min}}{h_{ef}} \right) \right) \leq 2.4 h_{ef} \right\}$

and $\boldsymbol{h}_{_{min}}$ according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{1]}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

 $Consider the approved range of embedment h_{ef,min} \le h_{ef} \le h_{ef,max} according to the table "anchor characteristics".$

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + (n_{x(y)} - 1)\frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx,sp} , f _{sy,sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f sx,sp , f sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,sp} , f _{sy,sp}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f sx,sp , f sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

Table 16: Influence of spacing on splitting resistance

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2} f _{cy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

- 1. Steel failure $V_{_{Rds}}$
- 2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,c}, N_{Rd,c}\}$
- 3. Concrete edge failure $V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$

1. Design steel shear resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
	5.8		[kN]	8.8	13.6	20.0	37.6	59.2	84.8	110.4	134.4
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
	A4		[kN]	8.3	12.8	19.2	35.3	55.1	79.5	48.3	58.8

Table 19: Design value of steel resistance $V_{Rd,s}$ of a single anchor

2. Design concrete pry-out resistance

 $V_{Rd,c} = k_{g} \cdot \min\{N_{Rd,p}; N_{Rd,c}\}$

Table 20: factor k₈ for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\textit{Rd,c}} = V^0_{\textit{Rd,c}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V^{\circ}_{_{Rd,c}}$ in case of concrete edge failure

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.8	8.3	10.3	13.1	15.2
Cracked concrete										
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.0	2.5	3.2	4.1	5.9	7.3	9.3	10.7

a. Influence of concrete strength

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

Table 22: Influence of concrete strength on concrete edge resistance

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

Table 23: Influence o	fembedment	depth on	concrete	edae	resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥12
f _{hef.V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s. when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

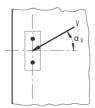
c _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1.V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

e. Influence of edge distance c₂

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c₂ on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00


^{1]} Distance to the second edge: $c_1 \leq c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹) For a ≥ 90° the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

- N_{Ed} = Design value of tension load acting on a fastener
- V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} & \left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ & \text{or} \\ & \left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ & \text{With } N_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and} \ V_{Ed} \ / \ V_{Rd,i} \leq 1 \\ & \text{The largest value of } N_{Ed} \ / \ N_{Rd,i} \ \text{and} \ V_{Ed} \ / V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range l	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +60°C	+35°C	+60°C
Temperature range III	- 40°C to +70°C	+43°C	+70°C

Working life of 50 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30		
0	Design bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)												
Temperature range l	Dry, wet			7.14	7.14	7.14	6.67	6.67	6.19	6.19	6.19		
Temperature range II	concrete and flooded	$\tau_{_{Rd,ucr}}$	[N/mm ²]	4.76	4.76	4.76	4.52	4.52	4.29	4.29	4.29		
Temperature range III	bore holee		3.33	3.33	3.33	3.10	3.10	2.86	2.86	2.86			

2- Cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30		
U U	Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)												
Temperature range l	Dry, wet			3.33	3.33	3.33	3.33	3.33	2.86	2.86	2.86		
Temperature range II	concrete and flooded	$\tau_{_{Rd,ucr}}$	[N/mm²]	2.38	2.38	2.38	2.38	2.38	2.14	2.14	2.14		
Temperature range III	bore holee		1.67	1.67	1.67	1.67	1.67	1.43	1.43	1.43			

Reduction factors

Working life of 50 years

1-Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30		
Reduction factor holes (CD)	Reduction factor for non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)												
Temperature range l	Dry, wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	concrete and floo- ded bore	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.67	0.67	0.67	0.68	0.68	0.69	0.69	0.69		
Temperature range III	ded bore hole			0.47	0.47	0.47	0.46	0.46	0.46	0.46	0.46		

2- Cracked concrete

Thread size				M 8	M10	M12	M16	M20	M24	M27	M30		
Reduction factor holes (CD)	Reduction factor for in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)												
Temperature range l	Dry, wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	concrete and floo- ded bore	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.71	0.71	0.71	0.71	0.71	0.75	0.75	0.75		
Temperature range III	ded bore hole			0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		

Mechanical characteristics

Steel grade	Thread size			M8	M10	M12	M16	M20	M24	M27	M30
	Stressed cross section	A,	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	9.0	18.0	31.1	79.6	155.7	268.9	398.8	538.9
	Yield strength	f	$[N/mm^2]$	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	$M^{\mathrm{O}}_{\mathrm{Rd},\mathrm{s}}$	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	$M^{\rm O}_{\rm Rd,s}$	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	$M^{O}_{Rd,s}$	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-30	Design bending moment	M ⁰ _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
A4-7 V	Design bending moment	M ⁰ _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation	Material									
Steel,	zinc plated (Steel acc. to	EN 10087:1998 or E	N 102	263:2001)							
- zinc p	lated ≥ 5 µm	acc. to EN ISO 4042	:1999								
- hot-dip	o galvanized ≥ 40 µm	acc. to EN ISO 1461	:2009	and EN ISO 10684:20	004+AC:2009						
- sherar	dized ≥ 45 μm	acc. to EN ISO 1766	8:2010	6							
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
			4.6	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A5 > 8%					
1	Anchor rod	acc. to	4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%					
		EN ISO 898- 1:2013	5.6	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%					
			5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%					
			8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A5 > 12% 3)					
			4	for anchor rod class 4	.6 or 4.8						
2	Hexagon nut	acc. to EN ISO 898- 2:2012	5	5 for anchor rod class 5.6 or 5.8							
			8	for anchor rod class 8	1.8						
3a	Washer			galvanized or sherardize EN ISO 7089:2000, El		EN ISO 7094:2000)					
3b	Filling washer	Steel, zinc plated, h	ot-dip g	alvanized or sherardize	ed						
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal threaded anchor	acc. to	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%					
	rod	EN ISO 898- 1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A5 > 8%					

WIT-PE 510 M

Part	Designation	Material									
	ess steel A2 (Material 1.4										
	ess steel A4 (Material 1.4										
High o	corrosion resistance ste	el (Material 1.4529 d	or 1.45	65, acc. to EN 10088-	1:2014)						
1	Anchor rod ^{1) 4)}	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
		acc. to EN ISO 3506-	50	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A5 > 12% ³⁾					
		1:2009	70	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 12% ³⁾					
			80	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 12% ³⁾					
	Hexagon nut ^{1] 4]}	acc. to EN ISO 3506- 1:2009	50	for anchor rod class 50							
2			70	for anchor rod class 70							
		1.2007	80	for anchor rod class 80							
3a	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN								
Зb	Filling washer	Stainless steel A4. H	ligh coi	rosion resistance steel							
	Internal threaded anchor rod ^{1) 2)}	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4		acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%					
		EN ISO 3506- 1:2009	70	$f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 450 \text{ N/mm}^2$	A5 > 8%					

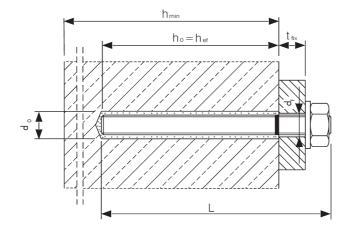
¹⁾ Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

³ $A_s > 8\%$ fracture elongation if <u>no</u> requirement for performance category C2 exists

^{4]} Property class 80 only for stainless steel A4

Working and curing times

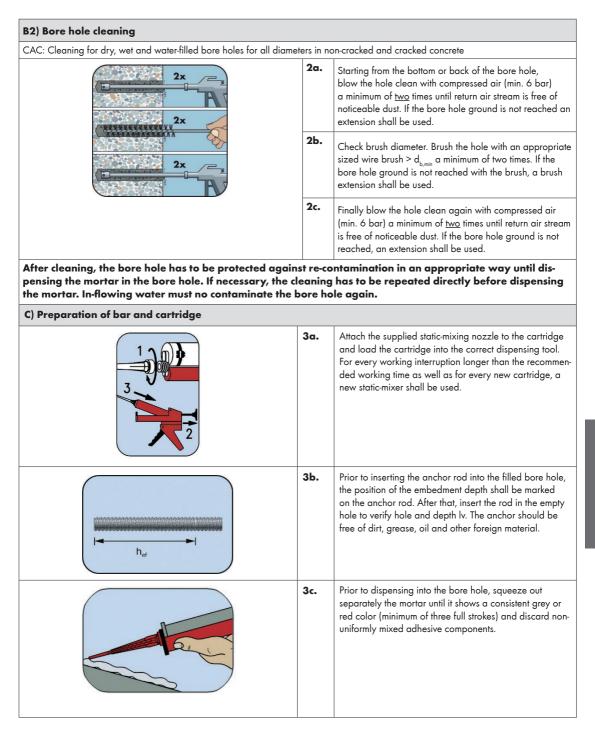

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
5°C to 9°C	80 min	60 h
10°C to 14°C	60 min	48 h
15°C to 19°C	40 min	24 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	10 h
35°C to 39°C	8 min	7 h
+40°C	8 min	4 h

¹⁾ for wet base material the curing time must be doubled

Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30	
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30	
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35	
	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	
Lifective uncholuge depin	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	
Diameter of clearance in	Prepositioned installation d _f ≤	[mm]	9	12	14	18	22	26	30	33	
hole in the fixture	Push through installation df	[mm]	12	14	16	20	24	30	33	40	
Maximum torque moment	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300	
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d _o			
Minimum spacing	\$ _{min}	[mm]	40	50	60	75	95	115	125	140	
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80	

¹⁾ Maximum torque moment for M12 with steel Grade 4.6 is 35 Nm


Installation instructions

A) Bore hole drilling	1a.	Hammer (HD) or compressed air drilling (CD)				
		Drill a hole into the base material to the size and em- bedment depth required by the selected reinforcing bar. Proceed with Step B1. In case of aborted drill hole, the drill hole shall be filled with mortar.				
	1b.	ollow drill bit system (HDB)				
		Drill a hole into the base material to the size and embor ment depth required by the selected reinforcing bar. The drilling system removes the dust and cleans the bore he during drilling (all conditions). Proceed with Step C. In case of aborted drill hole, the drill hole shall be fille with mortar.				
Attention! Standing water in the bore hole must b	e removed b	before cleaning.				
B1) Bore hole cleaning						
MAC: Cleaning for dry and wet bore holes with diameter d0	\leq 20 mm and l	pore hole depth $h \leq 10$ dnom (non-cracked concrete only				
4x	2a.	Starting from the bottom or back of the bore hole, blow the hole clean with a hand pump a minimum of <u>four</u> time until return air stream is free of noticeable dust.				
	2b.	Check brush diameter. Brush the hole with an appropriat sized wire brush > d _{b,min} a minimum of <u>four</u> times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used.				
	2c.	Finally blow the hole clean again with a hand pump a minimum of <u>four</u> times until return air stream is free of				

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

noticeable dust.

D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times. Piston plugs and mixer nozzle extensions shall be used for the following applications: 2 • Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø $d_0 \ge 18$ mm and embedment depth hef > 250 mm • Overhead assembly (vertical upwards direction): Drill bit- \emptyset d_o \ge 18 mm E) Setting the rebar 5a. Push the anchor rod into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The rod should be free ********* of dirt, grease, oil or other foreign material. 5b. After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through installation, in addition to the fixture, must be completely filled with mortar. Be sure that the anchor rod is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation, fix embedded part (e.g. with wedges). 5c. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the 20°C anchor until it is fully cured. 12 Std 5d. After full curing, the add-on part can be installed with up to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between the anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when mortar oozes out of the washer.

Filling quantity

Anchor type: M8 - M30

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Drill depth	h _o / h ₁	[mm]	= h _{ef}							
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	3.22	5.10

Assumed waste of 15 % included.