

440 ml

585 ml

Ø8-Ø32

Rebar not supplied by Würth

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	je sizes	Art. no.
440 ml	side-by-side	5918 615 440
585 ml	side-by-side	5918 615 585

Installation condition	n	
Dry concrete	Wet concrete	Flooded drill hole
\checkmark	✓	1
Drilling method		
Hammer drill	Diamond drill	Hollow drill
1	1	1

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330499-01-0601	ETA-20/1038, 02.04.2021
European Technical Assessment	DIBt, Berlin	EAD 330087-00-0601	ETA-20/1037, 04.03.2021

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crac	ced concrete	•											
Tension	C20/25	N.	[]]]	27.5	39.6	56.8	66.0	68.8	109.0	149.7	149.7	218.2	255.6
	C50/60	N _{rk}	[kN]	27.5	43.5	62.2	72.6	82.9	141.0	209.0	199.6	287.4	364.9
Shear	≥C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1
Cracked a	oncrete												
Tension	C20/25	NI	[IN]	12.1	19.8	29.0	35.7	40.8	64.1	95.0	99.0	130.6	165.9
	C50/60	N _{rk}	[kN]	13.3	21.8	31.9	39.3	44.9	70.5	104.5	108.9	143.7	182.5
Shear	≥ C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1

Characteristic resistance

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crack	ced concrete	•											
Tension	C20/25	NI	[kN]	13.4	18.8	27.0	31.4	32.7	51.9	71.3	71.3	103.9	121.7
	C50/60	N _{Rd}	[KIN]	14.7	20.7	30.4	34.6	39.5	67.1	99.5	95.0	136.8	173.8
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4
Cracked c	oncrete												
Tension	C20/25	NI	[kN]	5.7	9.4	13.8	17.0	19.4	30.5	45.2	47.1	62.2	79.0
	C50/60	N _{Rd}	[KIN]	6.3	10.4	15.2	18.7	21.4	33.6	49.8	51.8	68.4	86.9
Shear	≥ C20/25	$V_{_{Rd}}$	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

Recommended/allowable loads ¹⁾

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective an depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crac	ked concrete	•											
Tension	C20/25		[]]]	9.6	13.5	19.3	22.4	23.4	37.1	50.9	50.9	74.2	86.9
	C50/60	N _{rec}	[kN]	10.5	14.8	21.7	24.7	28.2	48.0	71.1	67.9	97.7	124.1
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80.7	105.3
Cracked	concrete												
Tension	C20/25	NI	[IN]	4.1	6.7	9.9	12.2	13.9	21.8	32.3	33.7	44.4	56.4
	C50/60	N _{rec}	[kN]	4.5	7.4	10.9	13.4	15.3	24.0	35.5	37.0	48.9	62.1
Shear	≥ C20/25	V _{rec}	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80.7	105.3

^{1]} Material safety factor $\gamma_{\rm M}$ and safety factor for action $\gamma_{\rm L}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures -Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4. For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure	$N_{_{Rd,s}}$		
2. Pull-out failure	$N_{_{Rd,p}}$	=	$N^{0}_{Rd,p} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$
3. Concrete cone failure	$N_{_{Rd,c}}$	=	$N^{0}_{Rd,c} \cdot f_{b,N} \cdot f_{hef} \cdot f_{ss} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$
4. Concrete splitting failure	N _{Rd,sp}	=	$N^{0}_{Rd,sp} \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	177.6	192.9	242.0	315.9

2. Design combined pull-out and concrete cone resistance

 $N_{\rm Rd,p} = N^0_{\rm Rd,p} \cdot f_{\rm b,N} \cdot f_{\rm hef} \cdot f_{\rm sx,p} \cdot f_{\rm sy,p} \cdot f_{\rm cx,1,p} \cdot f_{\rm cx,2,p} \cdot f_{\rm cy,p} \cdot f_{\rm sus}$

Table 2: Basic design resistance $N^{o}_{_{Rd_{p}}}$ in case of combined pull-out and concrete cone failure of a single anchor

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
e											
N ⁰ _{Rd,p}	[kN]	13.4	18.8	27.6	31.4	35.9	61.0	90.5	86.4	124.4	158.0
											<u> </u>
N ⁰ _{Rd,p}	[kN]	5.7	9.4	13.8	17.0	19.4	30.5	45.2	47.1	62.2	79.0
	N ⁰ _{Rd,p}	∍ N _{Rd,p} [kN]	h _{ef} [mm] 80 • N ⁰ _{Rd,p} [kN] 13.4	h _{ef} [mm] 80 90 >	h _{ef} [mm] 80 90 110 N Rd,p [kN] 13.4 18.8 27.6	h _{ef} [mm] 80 90 110 125 N Rd,p [kN] 13.4 18.8 27.6 31.4	h _{ef} [mm] 80 90 110 125 125 N Rd,p [kN] 13.4 18.8 27.6 31.4 35.9	h _{ef} [mm] 80 90 110 125 125 170 N Rdp [kN] 13.4 18.8 27.6 31.4 35.9 61.0	h _{ef} [mm] 80 90 110 125 125 170 210 N Rdp [kN] 13.4 18.8 27.6 31.4 35.9 61.0 90.5	h _{ef} [mm] 80 90 110 125 125 170 210 210 N N Rd,p [kN] 13.4 18.8 27.6 31.4 35.9 61.0 90.5 86.4	h _{ef} [mm] 80 90 110 125 125 170 210 210 270 N Rd,p [kN] 13.4 18.8 27.6 31.4 35.9 61.0 90.5 86.4 124.4

• $s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$ • $c_{cr,p} = s_{cr,p}/2$

Where $\tau_{_{Rk}}$ is the value $\tau_{_{Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance c_{crp} and spacing s_{crp} ($f_{sus} = 1$)

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Spacing	S _{cr,p}	[mm]	219	270	328	354	375	506	607	605	678	775
Edge distance	C _{cr,p}	[mm]	109	135	164	177	188	253	303	303	339	387

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹)	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, typ}}$$

 $Consider \ the \ approved \ range \ of \ embedment \ h_{ef,min} \leq h_{ef} \leq h_{ef,max} \ according \ to \ the \ table \ "installation \ parameters".$

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right)\frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx,p} , f _{sy,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,p,} f _{sy,p}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p} , f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1 \qquad \qquad f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.50	0.40	0.42	0.45	0.40	0.70	0.70	0.75	0.70	0.00	0.00	0.05	0.00	0.05	0.00	0.05	0.00	1.00
f _{cy}	0.55	0.58	0.60	0.63	0.65	0.08	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

N_{susd} = design value of sustained actions (permanent actions & permanent component of variable actions)

 N_{Ed} = Value of total actions in tension loading at ultimate limit state

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design concrete cone resistance

 $N_{Rd,c} = N^0_{Rd,c} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is c ≥ c_{cr,sp} for single fasteners and c ≥ 1.2 c_{cr,sp} for fastener groups and the member depth is h ≥ h_{min} in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{k} \leq 0.3$ mm

Table 8: Basic design resistance N⁰_{Pdc} in case of concrete cone failure of a single anchor

		Rd,c												
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300		
Non-cracked concrete														
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.8	20.0	27.0	32.7	32.7	51.9	71.3	71.3	103.9	121.7		
Cracked concrete														
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.7	14.0	18.9	22.9	22.9	36.3	49.9	49.9	72.7	85.2		

Table 9: Characteristic edge distance c_{an} and spacing s_{an}

		cr,IN	1	Cr,IN								
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Spacing	\$ _{cr,N}	[mm]	240	270	330	375	375	510	630	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef} and c_{cr,N} = 1.5 h_{ef}$$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistar	ice

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

^{2]} strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef.min} \le h_{ef} \le h_{ef.max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	$f_{sx'} f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

Table 11: Influence of spacing on concrete cone resistance

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥]
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2} f _{cy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

$N_{\rm Rd,sp} = N^{0}_{\rm Rd,sp} \cdot f_{\rm b,N} \cdot f_{\rm hef} \cdot f_{\rm sx,sp} \cdot f_{\rm sy,sp} \, \cdot f_{\rm cx,1,sp} \cdot f_{\rm cx,2,sp} \, \cdot f_{\rm cy,sp} \cdot f_{\rm h}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h_{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete	•											
Splitting resistance	N ⁰ _{Rd,c}	[kN]	13.4	18.8	27.0	31.4	32.7	51.9	71.3	71.3	103.9	121.7

Table 13: Design resistance N_{Pden} in case of concrete splitting failure of a single anchor

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

			sp ·	CI,5	P							
Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	142	161	165	218	274	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \cdot c_{cr,sp}$$
 and $c_{cr,sp} = \left\{ h_{ef} \le 2 h_{ef} \cdot \left(2.5 - \left(\frac{h_{min}}{h_{ef}} \right) \right) \le 2.4 h_{ef} \right\}$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	$f_{ck,cube}$	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

Table 15: Influence of concrete strength on splitting resistance

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

 $\label{eq:consider} \text{Consider the approved range of embedment } \textbf{h}_{\text{ef,min}} \leq \textbf{h}_{\text{ef}} \leq \textbf{h}_{\text{ef,max}} \text{ according to the table ,, anchor characteristics''}.$

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx,sp} , f _{sy,sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,sp} , f _{sy,sp}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,sp} , f _{sy,sp}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,sp} , f _{sy,sp}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$

$$f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp} f _{cy, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

- 1. Steel failure V_{Rds}
- 2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$
- 3. Concrete edge failure $V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{c1,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Design steel resistance	V _{Rd,s}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

2. Design concrete pry-out resistance

 $V_{Rd,c} = k_8 \cdot \min\{N_{Rd,p}; N_{Rd,c}\}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\textit{Rd,c}} = V^{0}_{\textit{Rd,c}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete	9											
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.6	5.8	8.3	12.2	12.2	14.3	17.2
Cracked concrete												
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.0	2.5	3.2	4.0	4.1	5.9	8.6	8.6	10.2	12.2

Table 21: Design resistance V^{0}_{Rdc} in case of concrete edge failure

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

		-	-	/		•						
c1/q	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c₂ on concrete edge resistance

c_1)	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

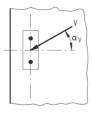
^{1]} Distance to the second edge: $c_1 \leq c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00


¹) For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

WIT-PE 510 R

Structural verification

- N_{Ed} = Design value of tension load acting on a fastener
- V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} & \left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ & \text{or} \\ & \left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ & \text{With } N_{ed} \ / \ N_{Rd,i} \leq 1 \ \text{and} \ V_{ed} \ / \ V_{Rd,i} \leq 1 \\ & \text{The largest value of } N_{ed} \ / \ N_{Rd,i} \ \text{and} \ V_{ed} \ / V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range l	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +60°C	+35°C	+60°C
Temperature range III	- 40°C to +70°C	+43°C	+70°C

Working life of 50 years

1-Non-cracked concrete

Thread size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
•	Design bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)												
Temperature range l	Dry, wet			6.7	6.7	6.7	5.7	5.7	5.7	5.7	5.2	5.2	5.2
Temperature range II	concrete and flooded	$\tau_{_{Rd,ucr}}$	[N/mm²]	4.5	4.5	4.5	4.0	4.0	4.0	3.6	3.6	3.6	3.6
Temperature range III	bore holee			2.9	2.9	2.9	2.9	2.9	2.6	2.6	2.6	2.4	2.4

2- Cracked concrete

Thread size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
0	Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air Irilled holes (CD)												
Temperature range l	Dry, wet			2.9	3.3	3.3	3.1	3.1	2.9	2.9	2.9	2.6	2.6
Temperature range II	concrete and flooded	$\tau_{_{Rd,ucr}}$	[N/mm²]	1.9	2.1	2.1	2.1	1.9	1.9	1.9	1.9	1.7	1.7
Temperature range III	bore holee			1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2

Reduction factors

Working life of 50 years

1-Non-cracked concrete

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fact holes (CD)	Reduction factors in non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)								r drilled				
Temperature range l	Dry, wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete and flooded	$\tau_{_{Rd,ucr}}$	[N/mm²]	0.68	0.68	0.68	0.71	0.71	0.71	0.63	0.68	0.68	0.68
Temperature range III	bore hole			0.43	0.43	0.43	0.50	0.50	0.46	0.46	0.50	0.45	0.45

2- Cracked concrete

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction factors in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)									lled				
Temperature range l	Dry, wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete and flooded	$\tau_{_{\text{Rd,cr}}}$	[N/mm²]	0.67	0.64	0.64	0.69	0.62	0.67	0.67	0.67	0.64	0.64
Temperature range III	bore hole			0.42	0.36	0.36	0.38	0.38	0.42	0.42	0.42	0.45	0.45

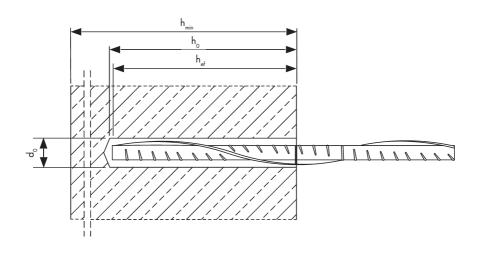
Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm ³]	50	98	170	269	402	785	1357	1534	2155	3217
	Yield strength	f _y	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm²]	483	483	483	483	483	483	483	483	483	483
	Design bending moment	M ⁰ _{Rd,s}	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	M ⁰ _{Rd,s}	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f _y	[N/mm²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	M ⁰ _{Rd,s}	[Nm]	22	43	75	118	177	345	597	675	948	1415

Material specifications

Product form			Bars and de-coiled rods	;
Class		Α	В	v
Characteristic yield stree	ngth f _{yk} or f _{0,2k} (MPa)		400 to 600	
Minimum value of k = (f	/f _y) _k	≥ 1,05	≥ 1,08	≥ 1,15 < 1,35
Characteristic strain at n	naximum force, ε _{uk} (%)	≥ 2,5	≥ 5,0	≥ 7,5
Bendability			Bend/Rebend test	
Maximum deviation from nominal mass	Nominal bar size (mm)			
(individual bar or wire) (%)	≤ 8 > 8		+/- 6,0 +/- 4,5	

Working and curing times

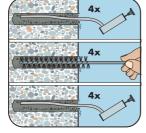

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
5°C to 9°C	80 min	60 h
10°C to 14°C	60 min	48 h
15°C to 19°C	40 min	24 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	10 h
35°C to 39°C	8 min	7 h
+40°C	8 min	4 h

¹⁾ for wet base material the curing time must be doubled

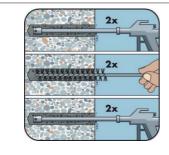
Installation parameters

Rebar size			Ø 8 ¹⁾ Ø		Øl	O ¹⁾	Ø	12 ¹⁾	Ø 14	Ø 16	Ø 20	ø	24 ¹⁾	ø	2 5 1)	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8		10 1		2	14	16	20	2	4	2	5	28	32	
Nominal drill hole diameter	d _o	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
denth	h _{ef,min}	[mm]	6	60		60 70		0	75	80	90	9	6	10	00	112	128
	h _{ef,max}	[mm]	16	50	20	00	24	40	280	320	400	48	30	50	00	560	640
Minimum thickness of	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm							h	_f + 2	d _o				
Minimum spacing	S _{min}	[mm]	4	0	50 60		0	70	75	85	12	20	12	20	130	150	
Minimum edge distance	C _{min}	[mm]	3	5	4	0	4	5	50	50	60	7	0	7	0	75	85

^{1]} both nominal drill hole diameter can be used



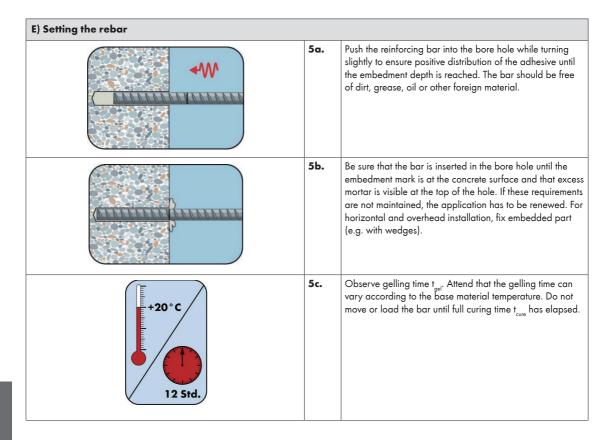
WIT-PE 510 R


Installation instructions

	1a.	Hammer (HD) or compressed air drilling (CD)				
		Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B1.				
	1b.	Hollow drill bit system (HDB)				
		Drill a hole into the base material to the size and embed				
		ment depth required by the selected reinforcing bar. This				
		drilling system removes the dust and cleans the bore hole				
		during drilling. Proceed with Step C.				
Bore hole cleaning						
AC: Cleaning for dry and wet bore holes with diameter d0 ≤	20 mm and l	pore hole depth h ≤ 10 d _{nom} (non-cracked concrete only!)				
4x 4	2a.	Starting from the bottom or back of the bore hole, blow				

2a. Starting from the bottom or back of the bore hole, blow the hole clean with a hand pump a minimum of <u>four</u> times until return air stream is free of noticeable dust. 2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > db,min a minimum of <u>four</u> times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used. 2c. Finally blow the hole clean again with a hand pump a minimum of <u>four</u> times until return air stream is free of noticeable dust.	≤ 20 m	m and b	pore hole depth $h \leq 10 d_{nom}$ (non-cracked concrete only!)						
 sized wire brush > d<u>b,min</u> a minimum of <u>four</u> times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used. Finally blow the hole clean again with a hand pump a minimum of <u>four</u> times until return air stream is free of 		2a.	the hole clean with a hand pump a minimum of <u>four</u> times						
minimum of <u>four</u> times until return air stream is free of		2b.	sized wire brush > d <u>b,min</u> a minimum of <u>four</u> times in a twisting motion. If the bore hole ground is not reached						
	2 c.		minimum of <u>four</u> times until return air stream is free of						

CAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked and cracked concrete



2a.	Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of <u>two</u> times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.							
2b.	Check brush diameter. Brush the hole with an appropriate sized wire brush > d _{b,min} a minimum of <u>two</u> times. If the bore hole ground is not reached with the brush, a brush extension shall be used.							
2c.	Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of <u>two</u> times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.							

C) Preparation of bar and cartridge		
	3α.	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.
	3ь.	Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar. After that, insert the bar in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material.
	Зс.	Prior to dispensing into the bore hole, squeeze out separa- tely the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components.
D) Filling the bore hole		
	4.	 Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/working times. Piston plugs and mixer nozzle extensions shall be used for the following applications: Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250 mm Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

WIT-PE 510 R

Filling quantity

Anchor type: M8 - M30

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40
Drill depth	h _o / h ₁	[mm]		= ,								
Filling volume per 10mm embedment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62

Assumed waste of 15 % included.

