

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, natural stone with dense structure

Cartridge s	izes		Art. no	•					
300 ml	foil-in-t	ube	0903 4	50 201					
420 ml	coaxia	I	0903 450 205						
825 ml	side-by	/-side	0903 4	50 206					
WIT-Nordic =	WIT-VM 2	50 for up to	⊳-20°C'	:					
330 ml	coaxic	I	0903 4	50 102					
* For more informa	tion, please visit	our Würth On	line Shop						
Type of inst	allation								
Pre-posi	tioned	In-pl	ace	Stand-off					
		-		1					
Installation	condition	1							
Dry co	ncrete	Wet co	oncrete	Flooded drill hole					
1		~	/	1					
Drilling met	thod								
Hamme	er drill	Diamo	ond drill	Hollow drill					
			-	1					

WIT-VM 250 M

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	ETAG 001-T5	ETA-12/0164, 12.11.2015
ICC-ES Evaluation Report	ICC	AC 308	ESR-4457, 01.09.2019
Fire resistance (concrete)	TU Kaiserslautern	TR 020	EBB 170019_6, 12.02.2018
LEED	eurofins		30.10.12
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	13.03.13
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Anchor material according is to specifications,

- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, f_{ck} = 60 N/mm²
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Thread size				M 8	M10	M12	M16	M20	M24	M27	M30	
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270	
Non-cracked concrete												
Tension	C20/25	N1		18.3	29.0	42.2	68.8	109.0	149.7	182.9	218.2	
	C50/60	N _{rk}	[kN]	18.3	29.0	42.2	78.5	122.5	176.5	223.9	251.9	
Shear	≥ C20/25	V _{Rk}		11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3	
Cracked concrete												
Tension	C20/25	NI		8.0	14.1	22.8	34.6	58.7	87.1	128.0	152.8	
	C50/60	N _{rk}	[kN]	8.8	15.6	25.1	38.0	64.6	95.8	145.6	181.9	
Shear	≥ C20/25	$V_{_{Rk}}$		11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3	

Characterstic resistance

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30		
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270		
Non-cracked concrete													
Tension	C20/25	NI		12.2	18.8	27.6	38.2	60.6	83.2	101.6	121.2		
	C50/60	N _{Rd}	[kN]	12.2	19.3	28.1	46.1	78.3	106.4	124.4	140.0		
Shear	≥C20/25	V _{Rd}		8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6		
Cracked concrete													
Tension	C20/25	NI		5.4	7.9	12.7	19.2	32.6	48.4	71.1	84.9		
	C50/60	N _{Rd}	[kN]	5.9	8.6	13.9	21.1	35.9	53.2	80.9	101.1		
Shear	≥ C20/25	$V_{_{Rd}}$		8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6		

WIT-VM 250 M

Recommended/allowable loads ¹⁾

Thread size				M8	M10	M12	M16	M20	M24	M27	M30		
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270		
Non-cracked concrete													
Tension	C20/25	NI		8.7	13.5	19.7	27.3	43.3	59.4	72.6	86.6		
	C50/60	N _{rec}	[kN]	8.7	13.8	20.1	32.9	56.0	76.0	88.9	100.0		
Shear	≥C20/25	V		6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2		
Cracked concrete													
Tension	C20/25	NI		3,8	5,6	9,1	13,7	23,3	34,6	50,8	60,6		
	C50/60	N _{rec}	[kN]	4,2	6,2	10,0	15,1	25,6	38,0	57,8	72,2		
Shear	≥ C20/25	$V_{_{rec}}$		6,3	9,9	14,5	26,9	42,0	60,5	78,7	96,2		

^{1]} Material safety factor γ_{M} and safety factor for action γ_{L} = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures -Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4. For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure	$N_{_{Rd,s}}$
2. Pull-out failure	$N_{\textit{Rd},\textit{p}} \ = N^{\textit{0}}_{\textit{Rd},\textit{p}} \cdot f_{\textit{b},\textit{N}} \cdot f_{\textit{hef}} \cdot f_{\textit{sx},\textit{p}} \cdot f_{\textit{sy},\textit{p}} \cdot f_{\textit{cx},\textit{1},\textit{p}} \cdot f_{\textit{cx},\textit{2},\textit{p}} \cdot f_{\textit{cy},\textit{p}} \cdot f_{\textit{sus}}$
3. Concrete cone failure	$N_{\textit{Rd,c}} = N^{0}_{\textit{Rd,c}} \cdot f_{\textit{b,N}} \cdot f_{\textit{hef}} \cdot f_{\textit{sx}} \cdot f_{\textit{sy}} \cdot f_{\textit{cx,1}} \cdot f_{\textit{cx}} \cdot f_{\textit{cy}}$
4. Concrete splitting failure	$N_{\textit{Rd,sp}} = N^{\textit{0}}_{\textit{Rd,sp}} \cdot f_{\textit{b;N}} \cdot f_{\textit{hef}} \cdot f_{\textit{sx,sp}} \cdot f_{\textit{sy,sp}} \cdot f_{\textit{cx,1,sp}} \cdot f_{\textit{cx,2,sp}} \cdot f_{\textit{cy,sp}} \cdot f_{\textit{h}}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Design steel resistance	5.8	N _{Rd,s}	[kN]	12.2	19.3	28.1	52.3	81.7	117.7	153.0	187.0
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}	[kN]	13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

2. Design combined pull-out and concrete cone resistance

$N_{\textit{Rd},p} = N^{0}_{\textit{Rd},p} \cdot f_{\textit{b},\textit{N}} \cdot f_{\textit{hef}} \cdot f_{\textit{sx,p}} \cdot f_{\textit{sy,p}} \cdot f_{\textit{cx,1,p}} \cdot f_{\textit{cx,2,p}} \cdot f_{\textit{cy,p}} \cdot f_{\textit{sus}}$

Table 2: Basic design resistance $N^{o}_{_{Rd,p}}$ in case of combined pull-out and concrete cone failure of a single anchor

Thread size			M 8	M10	M12	M16	M20	M24	M27	M30		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270		
Non-cracked concrete												
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	13.4	18.8	27.6	41.9	71.2	96.8	113.1	127.2		
Cracked concrete												
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	5.4	7.9	12.7	19.2	32.6	48.4	73.5	91.9		

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$
 • $c_{cr,p} = s_{cr,p}/2$

Where $au_{\rm \tiny Rk}$ is the value $au_{\rm \tiny Rk, \it ucr}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{_{CT,P}}$ and spacing $s_{_{CT,P}}$ ($f_{_{SUS}} = 1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	s _{cr,Np}	[mm]	185	253	303	375	506	581	623	657
Edge distance	C _{cr,Np}	[mm]	92	126	152	188	253	291	312	329

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{1]}\ \text{strength}\ \text{at}\ 28\ \text{days}\ \text{of}\ 150\ \text{mm}\ \text{diameter}\ \text{by}\ 300\ \text{mm}\ \text{cylinders}$

 $^{\scriptscriptstyle 2)}\mbox{strength}$ at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, typ}}$$

 $\label{eq:consider} \text{Consider the approved range of embedment } \textbf{h}_{\text{ef,min}} \leq \textbf{h}_{\text{ef}} \leq \textbf{h}_{\text{ef,max}} \text{ according to the table ,, installation parameters''}.$

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right)\frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx,p} , f _{sy,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,p,} f _{sy,p}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p} , f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1 \qquad \qquad f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, p} f _{cy, p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{_{Ed}}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design concrete cone resistance

 $N_{Rd,c} = N^0_{Rd,c} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2 c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \leq 0.3$ mm

Table 8: Basic design resistance $N^{\,\scriptscriptstyle 0}_{_{Rd,c}}$ in case of concrete cone failure of a single anchor

Rd,c		-								
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	23.3	31.5	38.2	60.6	83.2	101.6	121.2
Cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	16.3	22.1	26.7	42.4	58.2	71.1	84.9

Table 9: Characteristic edge distance $c_{_{cr,N}}$ and spacing $s_{_{cr,N}}$

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	s _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

 $s_{\rm cr,N} = 3 h_{\rm ef} and c_{\rm cr,N} = 1.5 h_{\rm ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{ь,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

^{2]} strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

 $Consider \ the \ approved \ range \ of \ embedment \ h_{ef,min} \leq h_{ef} \leq h_{ef,max} \ according \ to \ the \ table \ "anchor \ characteristics".$

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right)\frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

			-																	
Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥]
2	$f_{sx'} f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	$f_{sx'}f_{sy}$	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	$f_{sx'}f_{sy}$	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} f	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

Table 11: Influence of spacing on concrete cone resistance

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.42	0.65	0.40	0.70	0.72	0.75	0.70	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy}	0.55	0.58	0.60	0.03	0.65	0.08	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design Splitting Resistance

$N_{\rm Rd,sp} = N^{0}_{\rm Rd,sp} \cdot f_{\rm b,N} \cdot f_{\rm hef} \cdot f_{\rm sx,sp} \cdot f_{\rm sy,sp} \ \cdot f_{\rm cx,1,sp} \cdot f_{\rm cx,2,sp} \ \cdot f_{\rm cy,sp} \cdot f_{\rm h}$

Table 13: Design resistance $N_{\rm _{Rd,sp}}$ in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,sp}	[kN]	13.4	18.8	27.6	38.2	60.6	83.2	101.6	121.2

Table 14: Characteristic edge distance c_{cr.sp} and spacing s_{cr.sp}

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	218	266	304	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \cdot c_{cr,sp}$$
 and $c_{cr,sp} = \left\{ h_{ef} \le 2 h_{ef} \cdot \left(2.5 - \left(\frac{h_{min}}{h_{ef}} \right) \right) \le 2.4 h_{ef} \right\}$

and $\boldsymbol{h}_{_{min}}$ according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{1]}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

 $Consider the approved range of embedment h_{ef,min} \le h_{ef} \le h_{ef,max} according to the table "anchor characteristics".$

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right)\frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx,sp} , f _{sy,sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,sp} , f _{sy,sp}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,sp} , f _{sy,sp}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,sp} , f _{sy,sp}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$
 $f_{cx,2,sp} = f_{cy,sp} = \left(\int_{cy,sp}^{c_x} f_{cx,2,sp} + \int_{cy,sp}^{c_x} f_{cx,2,sp} \right)$

$$f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f cx, 1, sp	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp} f _{cy, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

- 1. Steel failure $V_{_{Rds}}$
- 2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,c}, N_{Rd,c}\}$
- 3. Concrete edge failure $V_{Rd,c} = V^{0}_{Rd,c} \cdot f_{b,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{cl,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$

1. Design steel shear resistance

Table 19: Design	value of steel	resistance V	of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
	5.8		[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
	A4		[kN]	8.3	12.8	19.2	35.3	55.1	79.5	48.3	58.8

2. Design concrete pry-out resistance

 $V_{\rm Rd,c} = k_g \cdot \min \{N_{\rm Rd,p}; N_{\rm Rd,c}\}$

Table 20: factor k_{s} for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design Concrete Edge Resistance

$$V_{\rm Rd,c} = ~V^0_{\rm Rd,c} \cdot f_{\rm b,V} \cdot f_{\rm hef,V} \cdot f_{\rm s,V} \cdot f_{\rm c1,V} \ \cdot f_{\rm c2,V} \cdot f_{\rm a} \cdot f_{\rm h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Rd,c meas	e en conici	cic cug	e ranore									
Thread size			M8	M10	M12	M16	M20	M24	M27	M30		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270		
Non-cracked concrete												
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	3.3	4.8	6.5	10.3	15.3	21.1	25.9	31.1		
Cracked concrete												
Basic design edge resistance	V ⁰ _{Rd.c}	[kN]	2.4	3.4	4.6	7.3	10.9	14.9	18.4	22.0		

Table 21: Design resistance $V_{Pd,c}^{0}$ in case of concrete edge failure

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥12
f _{bef V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s.V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

с _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

e. Influence of edge distance c_2

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c2 on concrete edge resistance

f _{c,V} 0.75	0.80	0.85	0.90	0.95	1.00

 $^{1]}$ Distance to the second edge: c1 \leq c2

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

- N_{Ed} = Design value of tension load acting on a fastener
- V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} & \left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ & \text{or} \\ & \left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ & \text{With } N_{Ed} / N_{Rd,i} \leq 1 \text{ and } V_{Ed} / V_{Rd,i} \leq 1 \\ & \text{The largest value of } N_{Ed} / N_{Rd,i} \text{ and } V_{Ed} / V_{Rd,i} \text{ for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range l	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C

Working life of 50 years

1- Non-cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Design bond resistance in no	n-crack	ed concrete	C20/25,	Dry and we	et concrete					
Temperature range l			6.7	6.7	6.7	6.7	6.7	6.1	5.6	5.0
Temperature range II	$\tau_{\rm Rd,ucr}$	[N/mm²]	5.0	5.0	5.0	5.0	5.0	4.7	4.2	3.6
Temperature range III]		3.7	3.6	3.6	3.6	3.6	3.6	3.1	2.8
Design bond resistance in no	n-crack	ed concrete	C20/25,	Flooded bo	ore hole		`			
Temperature range l			3.6	4.0	4.0	4.0		not adn	nissible	
Temperature range II	$\tau_{\rm Rd,ucr}$	[N/mm ²]	2.6	3.1	3.1	3.1		not adn	nissible	
Temperature range III			1.9	2.4	2.4	2.4		not adr	nissible	

2- Cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Design bond resistance in no	n-cracke	ed concrete	C20/25,	Dry and we	et concrete					
Temperature range l			2.7	2.8	3.1	3.1	3.1	3.1	3.6	3.6
Temperature range II	$\tau_{\rm Rd,cr}$	[N/mm ²]	1.7	1.9	2.2	2.2	2.2	2.2	2.5	2.5
Temperature range III			1.3	1.4	1.7	1.7	1.7	1.7	1.9	1.9
Design bond resistance in no	n-cracke	ed concrete	C20/25,	Flooded bo	re hole					
Temperature range l			1.9	1.9	2.6	2.6		not adn	nissible	
Temperature range II	$\tau_{\rm Rd,cr}$	[N/mm²]	1.2	1.4	1.9	1.9		not adn	nissible	
Temperature range III			1.0	1.2	1.4	1.4		not adr	nissible	

Reduction factors

Working life of 50 years

1-Non-cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Reduction factor for non-crac	ked cor	ncrete C20/	25, Dry c	ind wet cond	crete					
Temperature range l			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	$\tau_{Rd.ucr}$	[N/mm ²]	0.75	0.75	0.75	0.75	0.75	0.77	0.75	0.72
Temperature range III			0.55	0.54	0.54	0.54	0.54	0.59	0.55	0.77
Reduction factor for non-crac	ked cor	ncrete C20/	25, Flood	led bore hol	e					
Temperature range l			1.00	1.00	1.00	1.00		not adn	nissible	
Temperature range II	$\tau_{Rd.ucr}$	[N/mm ²]	0.73	0.76	0.76	0.76		not adn	nissible	
Temperature range III	-,		0.53	0.59	0.59	0.59		not adn	nissible	

2- Cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Reduction factor for non-crac	ked cor	ncrete C20/	25, Dry c	ind wet cond	crete					
Temperature range l			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	$\tau_{_{Rd,cr}}$	[N/mm²]	0.63	0.70	0.73	0.73	0.73	0.73	0.69	0.69
Temperature range III			0.50	0.50	0.55	0.55	0.55	0.55	0.54	0.78
Reduction factor for non-crac	ked cor	ncrete C20/	25, Flood	led bore hol	e					
Temperature range l			1.00	1.00	1.00	1.00		not adn	nissible	
Temperature range II	$\tau_{_{Rd,cr}}$	[N/mm²]	0.63	0.75	0.73	0.73		not adn	nissible	
Temperature range III			0.50	0.63	0.55	0.55		not adn	nissible	

Mechanical characteristics

Steel	Thread size			M8	M10	M12	M16	M20	M24	M27	M30
grade											
Effective of	anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
	Stressed cross section	A	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	fy	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
	Design bending moment	$M^{\rm O}_{\rm Rd,s}$	[Nm]	9.0	18.0	31.1	79.6	155.7	268.9	398.8	538.9
	Yield strength	fy	[N/mm ²]	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	$M^{\rm O}_{\rm Rd,s}$	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	fy	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield Strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	$M^{\rm O}_{\rm Rd,s}$	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	fy	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	M ⁰ _{Rd,s}	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-30	Design bending moment	M ⁰ _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
<u>, , , , , , , , , , , , , , , , , , , </u>	Design bending moment	M ⁰ _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation			Mate	rial	
Steel,	zinc plated (Steel acc. to	EN 10087:1998 or E	N 102	263:2001)		
- zinc p	lated ≥ 5 µm	acc. to EN ISO 4042	:1999			
- hot-dip	o galvanized ≥ 40 µm	acc. to EN ISO 1461	:2009	and EN ISO 10684:20	004+AC:2009	
- sherar	dized ≥ 45 µm	acc. to EN ISO 1766	8:2010	6		1
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
			4.6	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A5 > 8%
1	Anchor rod	acc. to	4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%
		EN ISO 898- 1:2013	5.6	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%
			5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%
			8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A5 > 12% 3)
			4	for anchor rod class 4	l.6 or 4.8	
2	Hexagon nut	acc. to EN ISO 898- 2:2012	5	for anchor rod class 5	5.6 or 5.8	
			8	for anchor rod class 8	3.8	
3a	Washer			galvanized or sherardize EN ISO 7089:2000, El	ed N ISO 7093:2000, or I	EN ISO 7094:2000)
3b	Filling washer	Steel, zinc plated, h	ot-dip g	alvanized or sherardize	ed	
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
4	Internal threaded anchor	acc. to	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%
	rod	EN ISO 898- 1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A5 > 8%

WIT-VM 250 M

Part	Designation			Mate	rial				
Stainl	ess steel A2 (Material 1.4	301 / 1.4303 / 1.43	807 / 1	1.4567 or 1.4541, acc	. to EN 1088-1:2014)				
Stainl	ess steel A4 (Material 1.4	401 / 1.4404 / 1.45	571/1	.4362 or 1.4578, acc	. to EN 10088-1:2014)				
High o	corrosion resistance ste	el (Material 1.4529 d	or 1.45	65, acc. to EN 10088-	1:2014)	1			
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
1	Anchor rod ^{1) 4)}	acc. to EN ISO 3506-	50	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A5 > 12% ³⁾			
		1:2009	70	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 12% 3)			
			80	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 12% ³⁾			
		acc. to	50	for anchor rod class 5	0				
2	Hexagon nut ^{1) 4)}	EN ISO 3506- 1:2009	70	for anchor rod class 70					
		1.2007	80	for anchor rod class 80					
3а	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	Aateria 29 or	1.4401 / 1.4404 / 1 1.4565, acc. to EN 100	.4307 / 1.4567 or 1.4 .4571 / 1.4362 or 1.4 088-1:2014 N ISO 7093:2000, or E	578, acc. to EN			
3b	Filling washer	Stainless steel A4, H	ligh coi	rrosion resistance steel					
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
4	Internal threaded anchor	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%			
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	$f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 450 \text{ N/mm}^2$	A5 > 8%			

¹⁾ Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

^{3]} A5 > 8% fracture elongation if no requirement for performance category C2 exists

⁴⁾ Property class 80 only for stainless steel A4

Chemical resistance

Chemical agent	Concentration	Resistant	Not Resistant
Accumulator acid		•	
Acetic acid	40		•
Acetic acid	10	•	
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer		•	
Benzene (kp 100-140°F)	100	•	
Benzol	100		•
Boric Acid, aqueous solution		•	
Calcium carbonate, suspended in water	all	•	
Calcium chloride, suspended in water		•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda solution	10	•	
Citric acid	all	•	
Diesel oil	100	•	
Ethyl alcohol, aqueous solution	50		•
Formic acid	100		•
Formaldehyde, aqueous solution	30	•	
Freon		•	
Fuel Oil		•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)	100	•	
Hydraulic fluid	conc.	•	
Hydrochloric acid (Muriatic Acid)		•	•
Hydrogen peroxide			•
Isopropyl alcohol	100		•
Lactic acid	all	•	•
Linseed oil	100	•	
	100	•	
Lubricating oil	all	•	
Magnesium chloride, aqueous solution		•	
Methanol Motor oil (SAE 20 W-50)	100	•	•
· · · · · · · · · · · · · · · · · · ·	100	•	
Nitric acid	10		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution	8		•
Phosphoric acid	85	•	
Potash lye (Potassium hydroxide)	10	•	
Potassium carbonate, aqueous solution	all	•	
Potassium chlorite, aqueous solution	all	•	
Potassium nitrate, aqueous solution	all	•	
Sodium carbonate	all	•	
Sodium Chloride, aqueous solution	all	•	
Sodium phosphate, aqueous solution	all	•	
Sodium silicate	all	•	
Standard Benzine	100	•	
Sulfuric acid	10	•	
Sulfuric acid	70		•
Tartaric acid	all	•	
Tetrachloroethylene	100	•	
Toluene			•
Trichloroethylene	100		•
Turpentine	100	•	

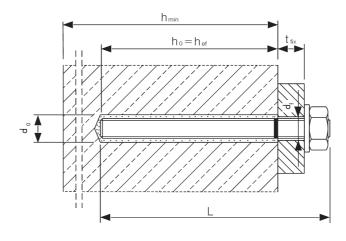
Properties of adhesive

Property		Testing method	Results
Stability			
UV-resistance (sunlight)			not resistant
Temperature resistance			120°C
Water resistance			resistant
Cleaning agents			1% tenside solution: no effect
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 14.7 N/mm ²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: ≥ 100 N/mm ²
Dynamic modulus of elasticity		DIN EN 12504-4	after 24 hours: 14.09 GPa
Thermal conductivity	Modified transient plane source method		0.66 / 0.63 W/mK
Specific contact resistance		IEC 93	3.6 x 109 Ωcm
Density		DIN 53479	$1.77 \pm 0.1 \text{ g/cm}^3$
Workability features	·	·	
Water tightness / Imper- meability		DIN EN 12390-8	after 72 hours at 5 bar: 0 mm
Open time (10-20°C)			15 min
Curing time (10-20°C)			80 min
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

Working and curing times

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-10°C to -6°C	90 min ²⁾	24 h
-5°C to -1°C	90 min	14 h
0°C to 4°C	45 min	7 h
5°C to 9°C	25 min	2 h
10°C to 19°C	15 min	80 min
20°C to 29°C	6 min	45 min
30°C to 34°C	4 min	25 min
35°C to 39°C	2 min	20 min
> 40°C	90 s	15 min


¹⁾ for wet base material the curing time must be doubled

²⁾ Cartridge temperature must be at min. +15°C

Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	32	35
Effective anchorage depth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance in hole	d⁺₹	[mm]	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b ≤	[mm]	12	14	16	20	26	30	34	37
Maximum torque moment	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} >	[mm]	0							
	t _{fix,max} <	[mm]	1500							
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d _o				
Minimum spacing	s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

Installation instructions

	1a.	Hammer (HD) or compressed air drilling (CD)
		Drill a hole into the base material to the size and embed ment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled wit mortar. (Manual Air Cleaning MAC <u>or</u> Compressed Air Cleaning CAC is allowed).
B) Bore hole cleaning		
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore	hole depth h _o :	≤ 10 d _{nom} (non-cracked concrete only!)
4x	2a.	Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump ¹⁾ a minimum of <u>four</u> times.
	2b.	Check brush diameter and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with ar appropriate sized wire brush > d _{b,min} a minimum of <u>four</u> times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
	2 c.	Finally blow the hole clean again with a hand pump1) a minimum of <u>four</u> times. If the bore hole ground is not reached with the brush, a brush extension shall be used
CAC: Cleaning for dry, wet and water-filled bore holes with a	Il diameters (no	n-cracked and cracked concrete)
	2a.	Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached of extension shall be used.
	2b.	Check brush diameter. Brush the hole with an appropric sized wire brush > db _{,min} a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
	2 c.	Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of four times until return air streat is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against rec-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 240 mm also in cracked concrete with a hand-pump.

C) Preparation of anchor rod and cartridge									
	За.	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommen- ded working time as well as for every new cartridge, a new static-mixer shall be used.							
l ← h _{of}	ЗЬ.	Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked.							
	Зс.	Prior to dispensing into the bore hole, squeeze out sepa- rately the mortar until it shows a consistent grey colour (minimum of three full strokes) and discard non-uniformly mixed adhesive components. In case of foil tubes, the cartridge must be stroked a minimum of six times.							
D) Filling the bore hole									
	4.	Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm, an extension nozzle shall be used. For overhead and horizontal installation, a piston plug and extension nozzle shall be used. Observe the gel-/ working times.							

E) Setting the anchor rod						
	5a.	Push the threaded rod into the bore hole while turning slightly to ensure positive distribution of the adhesive unt the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.				
	5b.	After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through ins- tallation, additionally also the fixture, must be completely filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application, the anchor rod shall be fixed (e.g. wedges).				
+20°C 45 Min.	5c.	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.				
	5d.	After fully curing, the add-on part can be installed with up to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when mortar oozes out of the washer.				

Filling Quantity

Anchor type: M8 - M30

Thread size			M8	M10	M12	M16	M20	M24	M27	M30	
Nominal drill hole	d。	[mm]	10	12	14	18	22	28	32	35	
diameter											
Drill depth	h _o / h ₁	[mm]	= h _{ef}								
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	4.34	5.10	

Assumed waste of 15 % included.