

Ø8 - Ø32

Rebar not supplied by Würth

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, natural stone with dense structure

Cartridge size	s	Art. no.
300 ml	foil-in-tube	0903 450 201
420 ml	coaxial	0903 450 205
825 ml	side-by-side	0903 450 206
WIT-Nordic = for	r up to -20°C*:	
330 ml	coaxial	0903 450 102

^{*} For more information, please visit our Würth Online Shop

Type of installation		
Pre-positioned	In-place	Stand-off
✓	-	-
Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
✓	✓	✓
Drilling method		
Hammer drill	Diamond drill	Hollow drill
√	_	1

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	ETAG 001-T5	ETA-12/0164, 12.11.2015
European Technical Assessment	DIBt, Berlin	EAD 330087-00-0601	ETA-12/0166, 27.02.2018
ICC-ES Evaluation Report	ICC	AC 308	ESR-4457, 01.09.2019
Fire resistance (concrete)	TU Kaiserslautern	TR 020	EBB 170019_6, 12.02.2018
LEED	eurofins		30.10.12
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	13.03.13
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage	depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked con	crete											
Tension	C20/25	N.	[LVI]	20.1	33.9	49.8	66.0	68.8	109.0	149.7	218.2	255.6
	C50/60	N _{Rk}	[kN]	22.1	37.3	54.7	72.6	82.9	141.0	199.6	261.3	282.0
Shear	≥ C20/25	V_{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	135.0	169.4	221.1
Cracked concrete	•											
Tension	C20/25	N.	[LVI]	8.0	14.1	22.8	30.2	34.6	58.7	90.7	152.8	178.9
	C50/60	N _{Rk}	[kN]	8.8	15.6	25.1	33.3	38.0	64.6	99.8	169.8	215.6
Shear	≥ C20/25	V_{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	135.0	169.4	221.1

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage	depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked con	crete											
Tension	C20/25	N.	[L K I]	13.4	18.8	27.6	36.7	38.2	60.6	83.2	121.2	142.0
	C50/60	N _{Rd}	[kN]	14.7	20.7	30.4	40.3	46.1	78.3	110.9	145.1	156.7
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4
Cracked concrete	•											
Tension	C20/25	N.	[L K I]	5.4	7.9	12.7	16.8	19.2	32.6	50.4	84.9	99.4
	C50/60	N _{Rd}	[kN]	5.9	8.6	13.9	18.5	21.1	35.9	55.4	94.3	119.8
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4

Recommended/allowable loads 1)

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage	depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked con	crete											
Tension	C20/25	N.	[kN]	9.6	13.5	19.7	26.2	27.3	43.3	59.4	86.6	101.4
	C50/60	N _{rec}	[KIN]	10.5	14.8	21.7	28.8	32.9	56.0	79.2	103.7	111.9
Shear	≥ C20/25	V _{rec}	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	64.3	80.7	105.3
Cracked concrete	•											
Tension	C20/25	N.	[L K I]	3.8	5.6	9.1	12.0	13.7	23.3	36.0	60.6	71.0
	C50/60	N _{rec}	[kN]	4.2	6.2	10.0	13.2	15.1	25.6	39.6	67.4	85.6
Shear	≥ C20/25	V _{rec} [kN]	6.5	10.3	14.8	20.2	26.3	41.1	64.3	80.7	105.3	

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sx,p} \cdot f_{cx,l,p} \cdot f_{cx,l,p} \cdot f_{cx,l,p} \cdot f_{cx,l,p} \cdot f_{sy,p} \cdot f_{$

 $3. \ \, \text{Concrete cone failure} \qquad \qquad N_{\scriptscriptstyle Rd,c} \ = N^0_{\scriptscriptstyle Rd,c} \cdot f_{\scriptscriptstyle b,N} \cdot f_{\scriptscriptstyle hef} \cdot f_{\scriptscriptstyle sx} \cdot f_{\scriptscriptstyle sy} \cdot f_{\scriptscriptstyle cx,1} \cdot f_{\scriptscriptstyle cx,} \cdot f_{\scriptscriptstyle cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{pd}, of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	$h_{\rm ef}$	[mm]	80	90	110	125	125	170	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	192.9	242.0	315.9

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance $N_{p,d}^0$ in case of combined pull-out and concrete cone failure of a single anchor

	Rd,p			· F · · · ·				0			
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete											
Combined pull-out and concrete cone resistance	N ⁰ _{Rd.p}	[kN]	13.4	18.8	27.6	36.7	41.9	71.2	100.8	131.9	142.4
Cracked concrete											
Combined pull-out and concrete cone resistance	N ^o _{Rd,p}	[kN]	5.4	7.9	12.7	16.8	19.2	32.6	50.4	85.8	108.9

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

$$\bullet c_{crp} = s_{crp}/2$$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr.p}$ and spacing $s_{cr.p}$ ($f_{sus} = 1$)

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Spacing	\$ _{cr,p}	[mm]	185	253	303	354	375	506	605	646	681
Edge distance c _{cr}		[mm]	92	126	152	177	188	253	303	323	341

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{1\!\}mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx,p,} f _{sy,p}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.42	0.65	0.40	0.70	0.73	0.75	0.78	0.80	0.83	0.85	^ 00	0.85	0.88	0.95	0.98	1.00
f _{cy}	0.55	0.56	0.00	0.03	0.63	0.06	0.70	0.73	0.73	0.76	0.80	0.63	0.63	0.00	0.63	0.00	0.93	0.96	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	23.3	31.5	38.2	38.2	60.6	83.2	121.2	142.0
Cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	16.3	22.1	26.7	26.7	42.4	58.2	84.9	99.4

Table 9: Characteristic edge distance $c_{cr,N}$ and spacing $s_{cr,N}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Spacing	S _{cr,N}	[mm]	240	270	330	375	375	510	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
r _{cv}																			

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$$

Table 13: Design resistance N_{ext} in case of concrete splitting failure of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete											
Splitting resistance	N ⁰ _{Rd,sp}	[kN]	13.4	18.8	27.6	36.7	38.2	60.6	83.2	121.2	142.0

Table 14: Characteristic edge distance $c_{cr.sp}$ and spacing $s_{cr.sp}$

		ci,op		ст, эр							
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	142	161	165	218	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ek}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$

3. Concrete edge failure $V_{Rdc} = V_{Rdc}^0 \cdot f_{hV} \cdot f_{hefV} \cdot f_{sV} \cdot f_{c1V} \cdot f_{c2V} \cdot f_{a} \cdot f_{hefV}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Design steel resistance	V _{Rd,s}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4

2. Design concrete pry-out resistance

$$V_{\rm Rd,c} = k_{\rm g} \cdot \min \{N_{\rm Rd,p}; N_{\rm Rd,c}\}$$

Table 20: factor k_g for calculating design pry-out resistance

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^0 \cdot f_{h,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{cl,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{hef,V}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d)$. For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance V_{Rdc}^0 in case of concrete edge failure

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage length	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete											
Basic design edge resistance	V ^O _{Rd,c}	[kN]	3.3	4.8	6.5	8.5	10.3	15.3	22.4	28.3	35.2
Cracked concrete									'		
Basic design edge resistance	V O Rd,c	[kN]	2.4	3.4	4.6	6.0	7.3	10.9	15.8	20.0	24.9

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacings in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c1 on concrete edge resistance

c ₁ /d	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	1 <i>7</i> .54	34.66	59.52	8 <i>7</i> .35

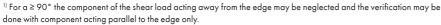
²⁾ strength at 28 days of 150 mm cubes

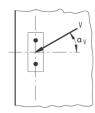
e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c _{2/c1} 1)	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00


^{1]} Distance to the second edge: $c_1 \le c_2$


f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)		10								
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range l	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C

Working life of 50 years

1- Non-cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Design bond resistance in non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			6.7	6.7	6.7	6.7	6.7	6.7	6.1	5.6	4.7
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	5.0	5.0	5.0	5.0	5.0	5.0	4.4	3.9	3.3
Temperature range III			3.7	3.6	3.6	3.6	3.6	3.6	3.3	2.8	2.5
Design bond resistance i	in non-c	racked conc	rete C20/	25, Flood	ed bore ho	ole					
Temperature range I			3.6	4.0	4.0	4.0	4.0		not adr	missible	
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	2.6	3.1	3.1	3.1	3.1	not admissib			
Temperature range III	Kd,0Cl		1.9	2.4	2.4	2.4	2.4	not admissible			

2- Cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Design bond resistance in non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			2.7	2.8	3.1	3.1	3.1	3.1	3.1	3.6	3.6
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	1.7	1.9	2.2	2.2	2.2	2.2	2.2	2.5	2.5
Temperature range III	,		1.3	1.4	1.7	1.7	1. <i>7</i>	1. <i>7</i>	1.7	1.9	1.9
Design bond resistance i	n non-c	racked conc	rete C20/	25, Flood	ed bore ho	ole					
Temperature range I			1.9	1.9	2.6	2.6	2.6		not adr	missible	
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	1.2	1.4	1.9	1.9	1.9	not admissible			
Temperature range III	Kd,UCF		1.0	1.2	1.4	1.4	1.4	not admissible			

Reduction factors

Working life of 50 years

1- Non-cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Reduction factor for non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.75	0.75	0.75	0.75	0.75	0.75	0.73	0.70	0.71
Temperature range III			0.55	0.54	0.54	0.54	0.54	0.54	0.55	0.50	0.53
Reduction factor for non-	cracked	d concrete C	20/25, Fl	ooded bo	re hole						
Temperature range I			1.00	1.00	1.00	1.00	1.00		not adr	missible	
Temperature range II	τ _{Rd,ucr}	[N/mm ²]	0.73	0.76	0.76	0.76	0.76		missible		
Temperature range III	Na,ucr		0.53	0.59	0.59	0.59	0.59	not admissible			

2- Cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Reduction factor for non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.63	0.70	0.73	0.73	0.73	0.73	0.73	0.69	0.69
Temperature range III	,		0.50	0.50	0.55	0.55	0.55	0.55	0.55	0.54	0.54
Reduction factor for non-	cracked	concrete C	20/25, Fl	ooded bo	re hole						
Temperature range I			1.00	1.00	1.00	1.00	1.00		not adr	missible	
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.63	0.75	0.73	0.73	0.73		not adr	missible	
Temperature range III	KG,UCI		0.50	0.63	0.55	0.55	0.55	not admissible			

Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm³]	50	98	170	269	402	<i>7</i> 85	13 <i>57</i>	1534	2155	3217
	Yield strength	f _y	[N/mm ²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm ²]	483	483	483	483	483	483	483	483	483	483
	Design bending moment	M ^O _{Rd,s}	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm ²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	M ^O _{Rd,s}	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f _y	[N/mm²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	M ^O _{Rd,s}	[Nm]	22	43	75	118	177	345	597	675	948	1415

Material specifications

Product form	1	Bars and de-coiled rods						
Class		A	В	С				
Characteristic yi	eld strength f _{yk} or		400 to 600) to 600				
Minimum value	of $k = (f_i/f_y)_k$	≥ 1.05	≥ 1.08	≥ 1.15 < 1.35				
Characteristic st force, ε _{uk} (%)	rain at maximum	≥ 2.5	≥ 5.0	≥ 7.5				
Bendability		Bend/Rebend test						
Maximum deviation from nominal mass (individual bar or wire) (%)	Nominal bar size (mm) ≤ 8 > 8		+/- 6.0 +/- 4.5					

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistant
Accumulator acid		•	
Acetic acid	40		•
Acetic acid	10	•	
Acetone	10		•
Ammonia, aqueous solution		•	
Aniline			•
Beer		•	
Benzene (kp 100-140°F)	100	•	
Benzol			•
Boric Acid, aqueous solution	100	•	
Calcium carbonate, suspended in water	all	•	
Calcium chloride, suspended in water	dii	•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda solution		•	
Citric acid		•	
Diesel oil		•	
		•	•
Ethyl alcohol, aqueous solution Formic acid			•
Formaldehyde, aqueous solution		•	_
	30	•	+
Freon E. J. O.I.		•	-
Fuel Oil	100		
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydraulic fluid		•	_
Hydrochloric acid (Muriatic Acid)			•
Hydrogen peroxide			•
Isopropyl alcohol			•
Lactic acid		•	
Linseed oil		•	
Lubricating oil		•	
Magnesium chloride, aqueous solution		•	
Methanol			•
Motor oil (SAE 20 W-50)		•	
Nitric acid			•
Oleic acid		•	
Perchloroethylene		•	
Petroleum		•	
Phenol, aqueous solution			•
Phosphoric acid		•	
Potash lye (Potassium hydroxide)	10	•	
Potassium carbonate, aqueous solution	all	•	
Potassium chlorite, aqueous solution	all	•	
Potassium nitrate, aqueous solution	all	•	
Sodium carbonate	all	•	
Sodium Chloride, aqueous solution	all	•	
Sodium phosphate, aqueous solution	all	•	
Sodium silicate	all	•	
Standard Benzine	100	•	
Sulfuric acid	10	•	
Sulfuric acid	70		•
Tartaric acid		•	
Tetrachloroethylene	40		
Toluene	100	•	•
Trichloroethylene	100		•
Turpentine		•	

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).

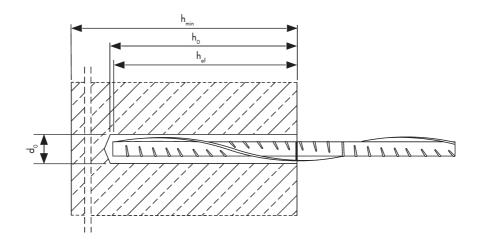
Properties of adhesive

Property		Testing method	Result / mean value
Stability			
UV-resistance (sunlight)			not resistant
Temperature resistance			120°C
Water resistance			resistant
Cleaning agents			1% tenside solution: no effect
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 14.7 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: ≥ 100 N/mm²
Dynamic modulus of elasticity		DIN EN 12504-4	after 24 hours: 14,09 GPa
Thermal conductivity	Modified transient plane source method		0,66 / 0,63 W/mK
Specific contact resistance		IEC 93	3,6 x 10° Ωcm
Density		DIN 53479	1,77 ± 0,1 g/cm ³
Workability features			
Water tightness / Impermeability		DIN EN 12390-8	after 72 hours at 5 bar: 0 mm
Open time (10-20°C)			15 min
Curing time (10-20°C)			80 min
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

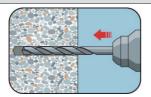
Working and curing times

Temperature of base material	Gelling - working time	Min. curing time – dry conditions ¹⁾
-10°C to -6°C	90 min ²⁾	24 h
-5°C to -1°C	90 min	14 h
0°C to 4°C	45 min	7 h
5°C to 9°C	25 min	2 h
10°C to 19°C	15 min	80 min
20°C to 29°C	6 min	45 min
30°C to 34°C	4 min	25 min
35°C to 39°C	2 min	20 min
> 40°C	90 s	1.5 min


¹⁾ for wet base material the curing time must be doubled

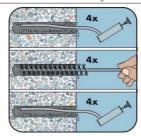
 $^{^{2)}}$ Cartridge temperature must be at min. +15 $^{\circ}\text{C}$

Installation parameters


Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	35	40
Effective anchorage	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b ≥	[mm]	14	16	18	20	22	26	34	37	41.5
Minimum thickness of member	h _{min}	[mm]		0 mm ≥				h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

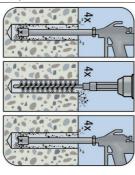
Installation instructions

A) Bore hole drilling



1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled with mortar.


B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ ds (non-cracked concrete only!)

- 2a. Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of four times
- 2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times in a twisting motion.
 If the bore hole ground is not reached with the brush, a
 - brush extension shall be used.
- **2c.** Finally blow the hole clean again with a hand pump a minimum of four times.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameters (non-cracked and cracked concrete)

- 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- **2c.** Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

C) Preparation of anchor rod and cartridge 3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used. 3b. Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar. After that, insert the bar in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material. 3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components. D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole with adhesive until the level mark at the mixer extension is visible at the top of the hole. For embedment larger than 190 mm, an extension nozzle shall be used. Slowly withdraw the static mixing nozzle. Using a piston plug during injection of the mortar helps to avoid creating air pockets. For overhead and horizontal installation and bore holes deeper than 240 mm, a piston plug and the appropriate mixer extension must be used. Observe the gel-/ working times.

E) Setting the rebar 5a. Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material. 5b. Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation, fix embedded part (e.g. with wedges). Observe gelling time t $_{\rm gel}$. Attend that the gelling time can vary according to the base material temperature. Do 5c. +20;C not move or load the bar until full curing time town has Allow the adhesive to cure to the specified time prior to applying any load. Do no move or load the bar until it is fully cured. After full curing time tcure has elapsed, the add-on part can be installed.

Filling Quantity

Anchor type: Ø 8 - Ø 32

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40
Drill depth	h _o / h ₁	[mm]				=	Ļ					
Filling volume per 10mm embed- ment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62

Assumed waste of 15 % included.

